Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(12): 2015-2028, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979581

RESUMO

We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.


Assuntos
Transtorno Autístico , Transtorno Bipolar , Criança , Humanos , Virulência , Pais , Família , Transtorno Autístico/genética , Transtorno Bipolar/genética
2.
medRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292616

RESUMO

We examined more than 38,000 spouse pairs from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents associated with neurodevelopmental disease risk in children. We identified correlations between six phenotypes in parents and children, including correlations of clinical diagnoses such as obsessive-compulsive disorder (R=0.31-0.49, p<0.001), and two measures of sub-clinical autism features in parents affecting several autism severity measures in children, such as bi-parental mean Social Responsiveness Scale (SRS) scores affecting proband SRS scores (regression coefficient=0.11, p=0.003). We further describe patterns of phenotypic and genetic similarity between spouses, where spouses show both within- and cross-disorder correlations for seven neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R=0.25-0.72, p<0.001) and a cross-disorder correlation between schizophrenia and personality disorder (R=0.20-0.57, p<0.001). Further, these spouses with similar phenotypes were significantly correlated for rare variant burden (R=0.07-0.57, p<0.0001). We propose that assortative mating on these features may drive the increases in genetic risk over generations and the appearance of "genetic anticipation" associated with many variably expressive variants. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse correlations with burden and pathogenicity of rare variants and propose that parental relatedness drives disease risk by increasing genome-wide homozygosity in children (R=0.09-0.30, p<0.001). Our results highlight the utility of assessing parent phenotypes and genotypes in predicting features in children carrying variably expressive variants and counseling families carrying these variants.

3.
Nat Commun ; 7: 13135, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731314

RESUMO

TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas do Tecido Nervoso/genética , Niacinamida/farmacologia , Subunidades Proteicas/genética , Canais de Cátion TRPV/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/agonistas , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/metabolismo , Niacinamida/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas/agonistas , Subunidades Proteicas/metabolismo , Sensação/efeitos dos fármacos , Sensação/fisiologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa