Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Neurosci ; 40(24): 4661-4672, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32393538

RESUMO

It is widely assumed that electrical synapses in the mammalian brain, especially between interneurons, underlie neuronal synchrony. In the hippocampus, principal cells also establish electrical synapses with each other and have also been implicated in network oscillations, whereby the origin of fast electrical activity has been attributed to ectopic spikelets and dendro-dendritic or axo-axonal gap junctions. However, if electrical synapses were in axo-dendritic connections, where chemical synapses occur, the synaptic events would be mixed, having an electrical component preceding the chemical one. This type of communication is less well studied, mainly because it is not easily detected. Moreover, a possible scenario could be that an electrical synapse coexisted with a chemical one, but in a nonconductive state; hence, it would be considered inexistent. Could chemical synapses have a quiescent electrical component? If so, can silent electrical synapses be activated to be detected? We addressed this possibility, and we here report that, indeed, the connexin-36-containing glutamatergic mossy fiber synapses of the rat hippocampus express previously unrecognized electrical synapses, which are normally silent. We reveal that these synapses are pH sensitive, actuate in vitro and in vivo, and that the electrical signaling is bidirectional. With the simultaneous recording of hundreds of cells, we could reveal the existence of an electrical circuit in the hippocampus of adult rats of either sex consisting of principal cells where the nodes are interregional glutamatergic synapses containing silent but ready-to-use gap junctions.SIGNIFICANCE STATEMENT In this work, we present a series of experiments, both in vitro and in vivo, that reveal previously unrecognized silent pH-sensitive electrical synapses coexisting in one of the best studied glutamatergic synapses of the brain, the mossy fiber synapse of the hippocampus. This type of connectivity underlies an "electrical circuit" between two substructures of the adult rat hippocampus consisting of principal cells where the nodes are glutamatergic synapses containing silent but ready-to-use gap junctions. Its identification will allow us to explore the participation of such a circuit in physiological and pathophysiological functions and will provide valuable conceptual tools to understanding computational and regulatory mechanisms that may underlie network activity.


Assuntos
Sinapses Elétricas/fisiologia , Junções Comunicantes/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Sinapses Elétricas/metabolismo , Junções Comunicantes/metabolismo , Hipocampo/metabolismo , Masculino , Rede Nervosa/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
2.
BMC Neurosci ; 20(1): 50, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547806

RESUMO

BACKGROUND: Movement performance depends on the synaptic interactions generated by coherent parallel sensorimotor cortical outputs to different downstream targets. The major outputs of the neocortex to subcortical structures are driven by pyramidal tract neurons (PTNs) located in layer 5B. One of the main targets of PTNs is the spinal cord through the corticospinal (CS) system, which is formed by a complex collection of distinct CS circuits. However, little is known about intracortical synaptic interactions that originate CS commands and how different populations of CS neurons are functionally organized. To further understand the functional organization of the CS system, we analyzed the activity of unambiguously identified CS neurons projecting to different zones of the same spinal cord segment using two-photon calcium imaging and retrograde neuronal tracers. RESULTS: Sensorimotor cortex slices obtained from transgenic mice expressing GCaMP6 funder the Thy1 promoter were used to analyze the spontaneous calcium transients in layer 5 pyramidal neurons. Distinct subgroups of CS neurons projecting to dorsal horn and ventral areas of the same segment show more synchronous activity between them than with other subgroups. CONCLUSIONS: The results indicate that CS neurons projecting to different spinal cord zones segregated into functional ensembles depending on their hodology, suggesting that a modular organization of CS outputs controls sensorimotor behaviors in a coordinated manner.


Assuntos
Conectoma , Tratos Piramidais/fisiologia , Medula Espinal/fisiologia , Animais , Cálcio/metabolismo , Imunofluorescência/métodos , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Córtex Motor/fisiologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico/métodos , Neurônios/fisiologia , Tratos Piramidais/metabolismo , Medula Espinal/metabolismo
3.
J Neurosci ; 34(5): 1868-78, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24478366

RESUMO

Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuroglia/fisiologia , Prolactina/sangue , Degeneração Retiniana/prevenção & controle , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Hiperprolactinemia/induzido quimicamente , Hiperprolactinemia/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Luz/efeitos adversos , Masculino , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Degeneração Retiniana/complicações , Degeneração Retiniana/etiologia , Degeneração Retiniana/genética , Doenças Retinianas/genética
4.
J Neural Transm (Vienna) ; 122(3): 369-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24919882

RESUMO

Endogenous palmitoylethanolamide (PEA) has a key role in pain modulation. Central or peripheral PEA can reduce nociceptive behavior, but no study has yet reported a descending inhibitory effect on the neuronal nociceptive activity of Aδ- and C-fibers. This study shows that intracisternal PEA inhibits the peripheral nociceptive responses of dorsal horn wide dynamic range cells (i.e., inhibition of Aδ- and C-fibers), an effect blocked by spinal methiothepin. These results suggest that a descending analgesic mechanism mediated by the serotonergic system could be activated by central PEA.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Analgésicos/farmacologia , Etanolaminas/farmacologia , Nociceptores/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Corno Dorsal da Medula Espinal/citologia , Amidas , Animais , Estimulação Elétrica , Laminectomia , Masculino , Metiotepina/farmacologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Antagonistas da Serotonina/farmacologia , Espaço Subaracnóideo/efeitos dos fármacos , Espaço Subaracnóideo/fisiologia , Fatores de Tempo
5.
Neurosci Lett ; 807: 137280, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37116574

RESUMO

Motor control largely depends on the deep layer 5 (L5) pyramidal neurons that project to subcortical structures. However, it is largely unknown if these neurons are functionally segregated with distinct roles in movement performance. Here, we analyzed mouse motor cortex L5 pyramidal neurons projecting to the red and pontine nuclei during movement preparation and execution. Using photometry to analyze the calcium activity of L5 pyramidal neurons projecting to the red nucleus and pons, we reveal that both types of neurons activate with different temporal dynamics. Optogenetic inhibition of either kind of projection differentially affects forelimb movement onset and execution in a lever press task, but only the activity of corticopontine neurons is significantly correlated with trial-by-trial variations in reaction time. The results indicate that cortical neurons projecting to the red and pontine nuclei contribute differently to sensorimotor integration, suggesting that L5 output neurons are functionally compartmentalized generating, in parallel, different downstream information.


Assuntos
Córtex Motor , Camundongos , Animais , Córtex Motor/fisiologia , Neurônios/fisiologia , Células Piramidais , Ponte , Núcleos Cerebelares
6.
PLoS One ; 18(1): e0278388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36634073

RESUMO

Given the ever-increasing prevalence of type 2 diabetes and obesity, the pressure on global healthcare is expected to be colossal, especially in terms of blindness. Electroretinogram (ERG) has long been perceived as a first-use technique for diagnosing eye diseases, and some studies suggested its use for preventable risk factors of type 2 diabetes and thereby diabetic retinopathy (DR). Here, we show that in a non-evoked mode, ERG signals contain spontaneous oscillations that predict disease cases in rodent models of obesity and in people with overweight, obesity, and metabolic syndrome but not yet diabetes, using one single random forest-based model. Classification performance was both internally and externally validated, and correlation analysis showed that the spontaneous oscillations of the non-evoked ERG are altered before oscillatory potentials, which are the current gold-standard for early DR. Principal component and discriminant analysis suggested that the slow frequency (0.4-0.7 Hz) components are the main discriminators for our predictive model. In addition, we established that the optimal conditions to record these informative signals, are 5-minute duration recordings under daylight conditions, using any ERG sensors, including ones working with portative, non-mydriatic devices. Our study provides an early warning system with promising applications for prevention, monitoring and even the development of new therapies against type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Eletrorretinografia/métodos , Fatores de Risco , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/prevenção & controle , Obesidade
7.
Front Hum Neurosci ; 16: 1043501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504625

RESUMO

The ability to learn motor skills implicates an improvement in accuracy, speed and consistency of movements. Motor control is related to movement execution and involves corticospinal neurons (CSp), which are broadly distributed in layer 5B of the motor and somatosensory cortices. CSp neurons innervate the spinal cord and are functionally diverse. However, whether CSp activity differs between different cortical areas throughout motor learning has been poorly explored. Given the importance and interaction between primary motor (M1) and somatosensory (S1) cortices related to movement, we examined the functional roles of CSp neurons in both areas. We induced the expression of GCaMP7s calcium indicator to perform photometric calcium recordings from layer 5B CSp neurons simultaneously in M1 and S1 cortices and track their activity while adult mice learned and performed a cued lever-press task. We found that during early learning sessions, the population calcium activity of CSp neurons in both cortices during movement did not change significantly. In late learning sessions the peak amplitude and duration of calcium activity CSp neurons increased in both, M1 and S1 cortices. However, S1 and M1 CSp neurons display a different temporal dynamic during movements that occurred when animals learned the task; both M1 and S1 CSp neurons activate before movement initiation, however, M1 CSp neurons continue active during movement performance, reinforcing the idea of the diversity of the CSp system and suggesting that CSp neuron activity in M1 and S1 cortices throughout motor learning have different functional roles for sensorimotor integration.

8.
Front Neurosci ; 16: 945594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248656

RESUMO

Neuromodulation interventions, such as Deep Brain Stimulation (DBS) and repeated transcranial magnetic stimulation (rTMS), are proposed as possible new complementary therapies to treat substance use disorders (SUD) such as alcohol use disorder (AUD). It is hypothesized that neuromodulation may induce neural plasticity in the reward and frontostriatal systems via electrical field induction, possibly reducing symptoms. Preclinical self-administration rodent models of AUD may help us gain insight into the effects of neuromodulation therapies on different pathology, as well as the neural mechanisms behind the positive effects. DBS, or any type of brain stimulation using intracranial electrodes in rodents, would benefit from the use of magnetic resonance imaging (MRI) to study the longitudinal effects and mechanisms of stimulation as well as novel targets, as it is a non-invasive technique that allows the analysis of structural and functional changes in the brain. To do this, there is a need for MRI-compatible electrodes that allow for MRI acquisition with minimal distortion of the magnetic field. In this protocol, we present a method for the construction and surgery of chronically implantable monopolar carbon electrodes for use in rats. Unlike conventional electrodes, carbon electrodes are resistant to high temperatures, flexible, and generate fewer artifacts in MRI compared to conventional ones. We validated its use by using a focal electrical stimulation high-frequency (20 Hz) protocol that lasted ∼10 sessions. We propose that this technique can also be used for the research of the neurophysiological bases of the neuromodulatory treatment in other preclinical substance use disorders (SUD) models.

9.
Front Cell Neurosci ; 16: 1073731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605617

RESUMO

Introduction: Pyramidal tract neurons (PTNs) are fundamental elements for motor control. However, it is largely unknown if PTNs are segregated into different subtypes with distinct characteristics. Methods: Using anatomical and electrophysiological tools, we analyzed in mice motor cortex PTNs projecting to red and pontine midbrain nuclei, which are important hubs connecting cerebral cortex and cerebellum playing a critical role in the regulation of movement. Results: We reveal that the vast majority of M1 neurons projecting to the red and pontine nuclei constitutes different populations. Corticopontine neurons have higher conduction velocities and morphologically, a most homogeneous dendritic and spine distributions along cortical layers. Discussion: The results indicate that cortical neurons projecting to the red and pontine nuclei constitute distinct anatomical and functional pathways which may contribute differently to sensorimotor integration.

10.
Front Neurosci ; 15: 686481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177458

RESUMO

The knowledge about how different subsystems participate and interplay in sensorimotor control is fundamental to understand motor deficits associated with CNS injury and movement recovery. The role of corticospinal (CS) and rubrospinal (RS) projections in motor control has been extensively studied and compared, and it is clear that both systems are important for skilled movement. However, during phylogeny, the emerging cerebral cortex took a higher hierarchical role controlling rubro-cerebellar circuits. Here, we present anatomical, neurophysiological, and behavioral evidence suggesting that both systems modulate complex segmental neuronal networks in a parallel way, which is important for sensorimotor integration at spinal cord level. We also highlight that, although specializations exist, both systems could be complementary and potentially subserve motor recovery associated with CNS damage.

11.
J Neurosci Methods ; 329: 108454, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669337

RESUMO

BACKGROUND: Understanding the configuration of neural circuits and the specific role of distinct cortical neuron types involved in behavior, requires the study of structure-function and connectivity relationships with single cell resolution in awake behaving animals. Despite head-fixed behaving rats have been used for in vivo measuring of neuronal activity, it is a concern that head fixation could change the performance of behavioral task. NEW METHOD: We describe the procedures for efficiently training Wistar rats to develop a behavioral task, involving planning and execution of a qualified movement in response to a visual cue under head-fixed conditions. The behavioral and movement performance in freely moving vs head-fixed conditions was analyzed. RESULTS: The best behavioral performance was obtained in the rats that were trained first in freely moving conditions and then placed in a head-restrained condition compared with the animals which first were habituated to head-restriction and then learned the task. Moreover, head restriction did not alter the movement performance. Stable juxtacellular recordings from sensorimotor cortex neurons were obtained while the rats were performing forelimb movements. Biocytin electroporation and retrograde tracer injections, permits identify the hodology of individual long-range projecting neurons. COMPARISON WITH EXISTING METHODS: Our method shows no difference in the behavioral performance of head fixed and freely moving conditions. Also includes a computer aided design of a discrete and ergonomic head-post allowing enough stability to perform juxtacellular recording and labeling of cortical neurons. CONCLUSIONS: Our method is suitable for the in vivo characterization of neuronal circuits and their long-range connectivity.


Assuntos
Comportamento Animal/fisiologia , Condicionamento Operante/fisiologia , Conectoma/métodos , Eletrocorticografia/métodos , Atividade Motora/fisiologia , Neurônios/fisiologia , Restrição Física , Córtex Sensório-Motor/fisiologia , Animais , Eletroporação , Membro Anterior/fisiologia , Movimentos da Cabeça/fisiologia , Técnicas de Rastreamento Neuroanatômico , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar
12.
Eur J Neurosci ; 30(6): 1056-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19723290

RESUMO

The participation of the hypothalamic paraventricular nucleus (PVN) in an endogenous central mechanism of analgesia has been observed using rats in various experimental procedures including electrophysiological and behavioral tests. However, little is known about the PVN neuronal responses to noxious stimulation. The only data available indicate a c-fos increase after noxious visceral stimulations. Our electrophysiological recordings of single PVN cells showed that, out of 223 cells, 79 responded to noxious mechanical and/or thermal stimuli, and another 10 responsive cells were found in the Reuniers thalamic nucleus. These cells responded only to noxious stimuli mainly in the ipsilateral hind limb but we also observed cells responding to stimulation of both hind limbs and also the tail. Mechanical stimulation was most effective but some cells could respond to both mechanical and thermal noxious stimuli. Some of the responding PVN cells were identified by antidromic stimulation in the ipsilateral lumbar dorsal horn spinal cord. Finally, in order to document the nature of the neurotransmitter and the projection to the spinal cord of the PVN cells that responded to noxious stimulation, we used a juxtacellular approach to record and stain some neurons and found them to be oxytocinergic by immunofluorescence procedures. The PVN cells activated by noxious stimuli may suppress the peripheral incoming afferent A-delta and C fibers, completing a circuit involved in diffuse endogenous analgesia. This mechanism strongly suggests that the PVN participates in a homeostatic mechanism involved in pain and analgesia.


Assuntos
Analgesia , Homeostase , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Células do Corno Posterior/fisiologia , Análise de Variância , Animais , Eletrofisiologia , Imunofluorescência , Corantes Fluorescentes , Masculino , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Estimulação Física , Células do Corno Posterior/metabolismo , Ratos , Ratos Wistar
13.
Eur J Neurosci ; 28(3): 546-58, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18702726

RESUMO

Previously, we demonstrated that stimulation of the paraventricular hypothalamic nucleus diminishes the nociceptive dorsal horn neuronal responses, and this decrease was mediated by oxytocin in the rat. In addition, we have proposed that oxytocin indirectly inhibits sensory transmission in dorsal horn neurons by exciting spinal inhibitory GABAergic interneurons. The main purpose of the present study was to identify which of the neurons projecting to supraspinal structures to transmit somatic information are modulated by the hypothalamic-spinal descending activation. In anaesthetized rats, single-unit extracellular and juxtacellular recordings were made from dorsal horn lumbar segments, which receive afferent input from the toe and hind-paw regions. The projecting spinothalamic tract and postsynaptic dorsal column system were identified antidromically. Additionally, in order to label the projecting dorsal horn neurons, we injected fluorescent retrograde neuronal tracers into the ipsilateral gracilis nucleus and contralateral ventroposterolateral thalamic nucleus. Hence, juxtacellular recordings were made to iontophoretically label the recorded neurons with a fluorescent dye and identify the recorded projecting cells. We found that only nociceptive evoked responses in spinothalamic tract and postsynaptic dorsal column neurons were significantly inhibited (48.1 +/- 4.6 and 47.7 +/- 8.2%, respectively) and non-nociceptive responses were not affected by paraventricular hypothalamic nucleus stimulation. We conclude that the hypothalamic-spinal system selectively affects the transmission of nociceptive information of projecting spinal cord cells.


Assuntos
Nociceptores/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Células do Corno Posterior/fisiologia , Medula Espinal/citologia , Tratos Espinotalâmicos/citologia , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica , Eletrofisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Nociceptores/citologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/anatomia & histologia , Células do Corno Posterior/citologia , Ratos , Ratos Wistar
14.
Neurosci Lett ; 444(2): 199-202, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18721859

RESUMO

Effects of different parameters of hypothalamic paraventricular nucleus (PVN) electrical stimulation on somatic responses, in dorsal horn neurons were examined. In anaesthetized rats, single-unit extracellular recordings were made from dorsal horn lumbar segments, which receive afferent input from the toe and hind paw regions. We compared the neuronal responses evoked by electrical stimulation of the receptive field (RF) with the responses preceded by ipsilateral PVN stimulation. Only the responses corresponding to Adelta and C-fiber activation were inhibited when PVN stimulation was delivered. Fast-evoked responses corresponding to Abeta fibers were not modified. The magnitude of inhibition depends on the intensity and duration of the PVN stimulation train and gradually decreases as the time interval between the PVN and RF stimulations increases. The results indicate that PVN modulates nociceptive, but not non-nociceptive neuronal responses at the spinal cord level, and this modulation depends on the parameters of the stimulus utilized to activate PVN neurons.


Assuntos
Dor/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Células do Corno Posterior/fisiologia , Animais , Estimulação Elétrica , Masculino , Ratos , Ratos Wistar
15.
Brain Res ; 1160: 20-9, 2007 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-17599811

RESUMO

The paraventricular nucleus (PVN) of the hypothalamus is an interesting structure with diverse functions due to its different neuronal populations, neurotransmitters, and projections to other central nervous system structures. The PVN is a primary source of oxytocin (OT) in the central nervous system. In fact, a direct PVN projection to the spinal cord has been demonstrated by retrograde and anterograde tracers, and more than the 50% of this projection is oxytocinergic. This OT descending projection is proposed to be an endogenous system that controls the nociceptive information arriving at the spinal cord. However, we have no information about the specific organization of the OT descending innervations to the different spinal cord segments. The aim of the present study was to determine whether the projecting PVN neurons arrive at cervical regions and then continue to lumbar regions. That is, we sought to establish if the OT projecting cells have a topic or a diffuse projection in order to obtain histological data to support the endogenous OT diffuse mechanism of analgesia described elsewhere. With this purpose in mind we combined the OT immunohistochemistry technique with retrograde neuronal tracers in the spinal cord. We applied Diamidino Yellow (DY) for the superficial dorsal horn cervical segments and True Blue (TB) for the lumbar segments. Data were collected from eight rats with well-placed injections. We only used the animals in which the tracer deposits were confined to superficial layers I and II of the dorsal horn. A mainly ipsilateral projection was observed, but stained neurons were also observed in the contralateral PVN. A large fraction of the stained PVN cells was doubled labeled but some were single labeled. Combining the retrograde tracer techniques and the OT detection procedure, we observed triple-labeled neurons. The present results demonstrate that PVN neurons send collaterals at least to the superficial cervical and lumbar segments of the dorsal horn of the spinal cord. Moreover, some of these stained cells use OT as a neurotransmitter. These results are of great relevance since they demonstrate that the PVN plays an important role in the somatosensorial system, and they support anatomic evidence of an endogenous mechanism involved in analgesia. Finally, we also describe median raphe nucleus double-labeled cells (DY+TB) signaling diffuse descending projections for this largely studied nucleus that are involved in endogenous analgesia.


Assuntos
Neurônios/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Medula Espinal/fisiologia , Vias Aferentes/fisiologia , Amidinas/farmacocinética , Animais , Benzofuranos/farmacocinética , Imunofilinas/metabolismo , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Wistar , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
16.
Brain Res ; 1137(1): 69-77, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17229405

RESUMO

In anaesthetized rats, we tested whether the unit activity of dorsal horn neurons that receive nociceptive input is modulated by electrical stimulation of the hypothalamic paraventricular nucleus (PVN). An electrophysiological mapping of dorsal horn neurons at L3-L4 let us choose cells responding to a receptive field located in the toes region of the left hindpaw. Dorsal horn neurons were classified according to their response properties to peripheral stimulation. Wide Dynamic Range (WDR) cells responding to electrical stimulation of the peripheral receptive field and presenting synaptic input of Adelta, Abeta, and C-fibers were studied. Suspected interneurons that are typically silent and lack peripheral receptive field responses were also analyzed. PVN electrical stimulation inhibits Adelta (-55.0+/-10.2%), C-fiber (-73.1+/-6.7%), and post-discharge (-75.0+/-8.9%) peripheral activation in WDR cells, and silent interneurons were activated. So, this last type of interneuron was called a PVN-ON cell. In WDR cells, the inhibition of peripheral responses caused by PVN stimulation was blocked by intrathecal administration of a specific oxytocin antagonist or bicuculline. However, PVN-ON cell activation was blocked by the same specific oxytocin antagonist, but not by bicuculline. Our results suggest that PVN stimulation inhibits nociceptive peripheral-evoked responses in WDR neurons by a descending oxytocinergic pathway mediated by GABAergic PVN-ON cells. We discuss our observation that the PVN electrical stimulation selectively inhibits Adelta and C-fiber activity without affecting Abeta fibers. We conclude that Adelta and C-fibers receive a presynaptic inhibition mediated by GABA.


Assuntos
Inibição Neural/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Células do Corno Posterior/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Mapeamento Encefálico , Estimulação Elétrica/métodos , Antagonistas GABAérgicos/farmacologia , Fibras Nervosas/fisiologia , Fibras Nervosas/efeitos da radiação , Inibição Neural/efeitos dos fármacos , Ocitocina/análogos & derivados , Ocitocina/antagonistas & inibidores , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos da radiação , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Wistar
17.
Neurosci Lett ; 419(2): 147-52, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17481815

RESUMO

Superficial dorsal horn neurons promote the transfer of nociceptive information from the periphery to supraspinal structures. The membrane and discharge properties of spinal cord neurons can alter the reliability of peripheral signals. In this paper, we analyze the location and response properties of a particular class of dorsal horn neurons that exhibits double spike discharge with a very short interspike interval (2.01+/-0.11 ms). These neurons receive nociceptive C-fiber input and are located in laminae I-II. Double spikes are generated spontaneously or by depolarizing current injection (interval of 2.37+/-0.22). Cells presenting double spike (interval 2.28+/-0.11) increased the firing rate by electrical noxious stimulation, as well as, in the first minutes after carrageenan injection into their receptive field. Carrageenan is a polysaccharide soluble in water and it is used for producing an experimental model of semi-chronic pain. In the present study carrageenan also produces an increase in the interval between double spikes and then, reduced their occurrence after 5-10 min. The results suggest that double spikes are due to intrinsic membrane properties and that their frequency is related to C-fiber nociceptive activity. The present work shows evidence that double spikes in superficial spinal cord neurones are related to the nociceptive stimulation, and they are possibly part of an acute pain-control mechanism.


Assuntos
Potenciais de Ação/fisiologia , Nociceptores/fisiologia , Dor/fisiopatologia , Células do Corno Posterior/fisiologia , Transmissão Sináptica/fisiologia , Animais , Carragenina/efeitos adversos , Estimulação Elétrica/efeitos adversos , Mediadores da Inflamação/efeitos adversos , Masculino , Fibras Nervosas Amielínicas/fisiologia , Inibição Neural/fisiologia , Ratos , Ratos Wistar
18.
Nat Commun ; 8(1): 870, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021587

RESUMO

Pyramidal tract neurons (PTs) represent the major output cell type of the neocortex. To investigate principles of how the results of cortical processing are broadcasted to different downstream targets thus requires experimental approaches, which provide access to the in vivo electrophysiology of PTs, whose subcortical target regions are identified. On the example of rat barrel cortex (vS1), we illustrate that retrograde tracer injections into multiple subcortical structures allow identifying the long-range axonal targets of individual in vivo recorded PTs. Here we report that soma depth and dendritic path lengths within each cortical layer of vS1, as well as spiking patterns during both periods of ongoing activity and during sensory stimulation, reflect the respective subcortical target regions of PTs. We show that these cellular properties result in a structure-function parameter space that allows predicting a PT's subcortical target region, without the need to inject multiple retrograde tracers.The major output cell type of the neocortex - pyramidal tract neurons (PTs) - send axonal projections to various subcortical areas. Here the authors combined in vivo recordings, retrograde tracings, and reconstructions of PTs in rat somatosensory cortex to show that PT structure and activity can predict specific subcortical targets.


Assuntos
Tratos Piramidais/anatomia & histologia , Tratos Piramidais/fisiologia , Potenciais de Ação , Animais , Dendritos , Masculino , Técnicas de Rastreamento Neuroanatômico , Ratos Wistar
19.
Brain Struct Funct ; 222(9): 3945-3958, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28528380

RESUMO

The descending corticospinal (CS) projection has been considered a key element for motor control, which results from direct and indirect modulation of spinal cord pre-motor interneurons in the intermediate gray matter of the spinal cord, which, in turn, influences motoneurons in the ventral horn. The CS tract (CST) is also involved in a selective and complex modulation of sensory information in the dorsal horn. However, little is known about the spinal network engaged by the CST and the organization of CS projections that may encode different cortical outputs to the spinal cord. This study addresses the issue of whether the CS system exerts parallel control on different spinal networks, which together participate in sensorimotor integration. Here, we show that in the adult rat, two different and partially intermingled CS neurons in the sensorimotor cortex activate, with different time latencies, distinct spinal cord neurons located in the dorsal horn and intermediate zone of the same segment. The fact that different populations of CS neurons project in a segregated manner suggests that CST is composed of subsystems controlling different spinal cord circuits that modulate motor outputs and sensory inputs in a coordinated manner.


Assuntos
Córtex Cerebral/fisiologia , Potenciais Evocados/fisiologia , Tratos Piramidais/anatomia & histologia , Tratos Piramidais/fisiologia , Medula Espinal/fisiologia , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Córtex Cerebral/citologia , Estimulação Elétrica , Masculino , Neurônios/fisiologia , Ratos , Ratos Wistar , Tempo de Reação , Medula Espinal/citologia
20.
Brain Res ; 1081(1): 126-37, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16497280

RESUMO

Oxytocin properties have been studied in different experimental models in order to obtain evidence for its analgesic properties. The analgesic effect of an oxytocinergic pathway descending from the hypothalamus reaching the dorsal horn of the spinal cord has been studied. In anesthetized rats, we recorded single units at the L4-L5 spinal dorsal horn level and stimulated the peripheral receptive field. The evoked responses were classified according to their latencies in A-beta, A-delta, C fibers, and postdischarge. We used these responses to evaluate the effects of electrical stimulation of the paraventricular nucleus (PV) of the hypothalamus. We observed a selective blockage of A-delta and C fibers related to the duration of the train stimulus duration. Similar effects were observed when oxytocin (OT) was applied directly on the spinal cord. The effects of OT and of PV electrical stimulation were reversed in a dose-dependent manner by application of the specific OT antagonist (OTA). These effects were observed in cells with reduced wind-up and cells displaying a clear wind-up response to peripheral stimulation. Superficial and deeper cells in the dorsal spinal cord were involved. The recorded cells were marked by pontamine blue iontophoretic injection after each cell recording, and their histological locations were specified. In order to obtain a behavioral correlation, we used rats with a loose ligature of the sciatic nerve and a chronic intrathecal catheter reaching the L4-L5 spinal cord level. We tested the hyperalgesia and allodynia of these animals using von Frey filaments and the application of acetone to the hind paws. Our results show a significant reduction in the mechanical and thermal test after the administration of 15 microl of 10(-6) M OT. Our electrophysiological, pharmacological, and behavioral results point out a clear OT antialgesic effect. The results are discussed on the basis of a previous work showing an OT blockage of glutamate activation. The paraventricular hypothalamic descending OT pathway is proposed as an interesting mechanism producing analgesia.


Assuntos
Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Estimulação Elétrica/métodos , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Vias Neurais/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Ocitocina/farmacologia , Dor/fisiopatologia , Medição da Dor/métodos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos da radiação , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa