Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cogn Neuropsychiatry ; 27(2-3): 199-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34708671

RESUMO

INTRODUCTION: Neurocognitive models of hallucinations posit theories of misattribution and deficits in the monitoring of mental or perceptual phenomena but cannot yet account for the subjective experience of hallucinations across individuals and diagnostic categories. Arts-based research methods (ABRM) have potential for advancing research, as art depicts experiences which cognitive neuropsychiatry seeks to explain. METHODS: To examine how incorporating ABRM may advance hallucination research and theories, we explore data on the lived experiences of hallucinations in psychiatric and neurological populations. We present a multiple case study of two empirical ABRM studies, which used participant-generated artwork and artist collaborations alongside interviews. RESULTS: ABRM combined with interviews illustrated that hallucinations were infused with sensory features, characterised by embodiment, and situated within lived circumstances. These findings advance neurocognitive models of hallucinations by nuancing their multimodal nature, illustrating their embodied feelings, and exploring their content and themes. The process of generating artworks aided in disclosing difficult to discuss hallucinations, promoted participant self-reflection, and clarified multimodal details that may have been misconstrued through interview alone. ABRM were relevant and acceptable for participants and researchers. CONCLUSION: ABRM may contribute to the development of neurocognitive models of hallucinations by making hallucination experiences more visible, tangible, and accessible.


Assuntos
Emoções , Alucinações , Alucinações/psicologia , Humanos , Inventário de Personalidade , Inquéritos e Questionários
2.
Transl Psychiatry ; 10(1): 387, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159044

RESUMO

All perception is a construction of the brain from sensory input. Our first perceptions begin during gestation, making fetal brain development fundamental to how we experience a diverse world. Hallucinations are percepts without origin in physical reality that occur in health and disease. Despite longstanding research on the brain structures supporting hallucinations and on perinatal contributions to the pathophysiology of schizophrenia, what links these two distinct lines of research remains unclear. Sulcal patterns derived from structural magnetic resonance (MR) images can provide a proxy in adulthood for early brain development. We studied two independent datasets of patients with schizophrenia who underwent clinical assessment and 3T MR imaging from the United Kingdom and Shanghai, China (n = 181 combined) and 63 healthy controls from Shanghai. Participants were stratified into those with (n = 79 UK; n = 22 Shanghai) and without (n = 43 UK; n = 37 Shanghai) hallucinations from the PANSS P3 scores for hallucinatory behaviour. We quantified the length, depth, and asymmetry indices of the paracingulate and superior temporal sulci (PCS, STS), which have previously been associated with hallucinations in schizophrenia, and constructed cortical folding covariance matrices organized by large-scale functional networks. In both ethnic groups, we demonstrated a significantly shorter left PCS in patients with hallucinations compared to those without, and to healthy controls. Reduced PCS length and STS depth corresponded to focal deviations in their geometry and to significantly increased covariance within and between areas of the salience and auditory networks. The discovery of neurodevelopmental alterations contributing to hallucinations establishes testable models for these enigmatic, sometimes highly distressing, perceptions and provides mechanistic insight into the pathological consequences of prenatal origins.


Assuntos
Alucinações , Esquizofrenia , Adulto , China , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Reino Unido
3.
Neuroimage Clin ; 21: 101606, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30503215

RESUMO

Obesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported that obesity accelerates AD-related pathophysiology and memory impairment in mouse models of AD. However, the nature of the brain structure-behaviour relationship mediating this acceleration remains unclear. In this manuscript we evaluated the impact of adolescent obesity on the brain morphology of the triple transgenic mouse model of AD (3xTg) and a non-transgenic control model of the same background strain (B6129s) using longitudinally acquired structural magnetic resonance imaging (MRI). At 8 weeks of age, animals were placed on a high-fat diet (HFD) or an ingredient-equivalent control diet (CD). Structural images were acquired at 8, 16, and 24 weeks. At 25 weeks, animals underwent the novel object recognition (NOR) task and the Morris water maze (MWM) to assess short-term non-associative memory and spatial memory, respectively. All analyses were carried out across four groups: B6129s-CD and -HFD and 3xTg-CD and -HFD. Neuroanatomical changes in MRI-derived brain morphology were assessed using volumetric and deformation-based analyses. HFD-induced obesity during adolescence exacerbated brain volume alterations by adult life in the 3xTg mouse model in comparison to control-fed mice and mediated volumetric alterations of select brain regions, such as the hippocampus. Further, HFD-induced obesity aggravated memory in all mice, lowering certain memory measures of B6129s control mice to the level of 3xTg mice maintained on a CD. Moreover, decline in the volumetric trajectories of hippocampal regions for all mice were associated with the degree of spatial memory impairments on the MWM. Our results suggest that obesity may interact with the brain changes associated with AD-related pathology in the 3xTg mouse model to aggravate brain atrophy and memory impairments and similarly impair brain structural integrity and memory capacity of non-transgenic mice. Further insight into this process may have significant implications in the development of lifestyle interventions for treatment of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Comportamento Animal/fisiologia , Disfunção Cognitiva/fisiopatologia , Dieta Hiperlipídica , Neuroimagem , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/fisiologia , Camundongos , Memória Espacial/fisiologia , Proteínas tau/metabolismo
4.
EClinicalMedicine ; 8: 57-71, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31193632

RESUMO

BACKGROUND: Hallucinations are transmodal and transdiagnostic phenomena, occurring across sensory modalities and presenting in psychiatric, neurodegenerative, neurological, and non-clinical populations. Despite their cross-category occurrence, little empirical work has directly compared between-group neural correlates of hallucinations. METHODS: We performed whole-brain voxelwise meta-analyses of hallucination status across diagnoses using anisotropic effect-size seed-based d mapping (AES-SDM), and conducted a comprehensive systematic review in PubMed and Web of Science until May 2018 on other structural correlates of hallucinations, including cortical thickness and gyrification. FINDINGS: 3214 abstracts were identified. Patients with psychiatric disorders and hallucinations (eight studies) exhibited reduced gray matter (GM) in the left insula, right inferior frontal gyrus, left anterior cingulate/paracingulate gyrus, left middle temporal gyrus, and increased in the bilateral fusiform gyrus, while patients with neurodegenerative disorders with hallucinations (eight studies) showed GM decreases in the left lingual gyrus, right supramarginal gyrus/parietal operculum, left parahippocampal gyrus, left fusiform gyrus, right thalamus, and right lateral occipital gyrus. Group differences between psychiatric and neurodegenerative hallucination meta-analyses were formally confirmed using Monte Carlo randomizations to determine statistical significance, and a jackknife sensitivity analysis established the reproducibility of results across nearly all study combinations. For other structural measures (28 studies), the most consistent findings associated with hallucination status were reduced cortical thickness in temporal gyri in schizophrenia and altered hippocampal volume in Parkinson's disease and dementia. Additionally, increased severity of hallucinations in schizophrenia correlated with GM reductions within the left superior temporal gyrus, right middle temporal gyrus, bilateral supramarginal and angular gyri. INTERPRETATION: Distinct patterns of neuroanatomical alteration characterize hallucination status in patients with psychiatric and neurodegenerative diseases, suggesting a plurality of anatomical signatures. This approach has implications for treatment, theoretical frameworks, and generates refutable predictions for hallucinations in other diseases and their occurrence within the general population. FUNDING: None.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa