Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(7): e2400059, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38627301

RESUMO

Chagas disease is a neglected tropical parasitic disease caused by the protozoan Trypanosoma cruzi. Worldwide, an estimated 8 million people are infected with T. cruzi, causing more than 10,000 deaths per year. Currently, only two drugs, nifurtimox and benznidazole (BNZ), are approved for its treatment. However, both are ineffective during the chronic phase, show toxicity, and produce serious side effects. This work aimed to obtain and evaluate novel 2-nitroimidazole-N-acylhydrazone derivatives analogous to BNZ. The design of these compounds used the two important pharmacophoric subunits of the BNZ prototype, the 2-nitroimidazole nucleus and the benzene ring, and the bioisosterism among the amide group of BNZ and N-acylhydrazone. The 27 compounds were obtained by a three-step route in 57%-98% yields. The biological results demonstrated the potential of this new class of compounds, since eight compounds were potent and selective in the in vitro assay against T. cruzi amastigotes and trypomastigotes using a drug-susceptible strain of T. cruzi (Tulahuen) (IC50 = 4.3-6.25 µM) and proved to be highly selective with low cytotoxicity on L929 cells. The type I nitroreductase (TcNTR) assay suggests that the new compounds may act as substrates for this enzyme.


Assuntos
Hidrazonas , Nitroimidazóis , Testes de Sensibilidade Parasitária , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Nitroimidazóis/síntese química , Relação Estrutura-Atividade , Animais , Hidrazonas/farmacologia , Hidrazonas/síntese química , Hidrazonas/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Camundongos , Estrutura Molecular , Relação Dose-Resposta a Droga , Humanos
2.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005183

RESUMO

Chagas disease (CD), which is caused by Trypanosoma cruzi and was discovered more than 100 years ago, remains the leading cause of death from parasitic diseases in the Americas. As a curative treatment is only available for the acute phase of CD, the search for new therapeutic options is urgent. In this study, nitroazole and azole compounds were synthesized and underwent molecular modeling, anti-T. cruzi evaluations and nitroreductase enzymatic assays. The compounds were designed as possible inhibitors of ergosterol biosynthesis and/or as substrates of nitroreductase enzymes. The in vitro evaluation against T. cruzi clearly showed that nitrotriazole compounds are significantly more potent than nitroimidazoles and triazoles. When their carbonyls were reduced to hydroxyl groups, the compounds showed a significant increase in activity. In addition, these substances showed potential for action via nitroreductase activation, as the substances were metabolized at higher rates than benznidazole (BZN), a reference drug against CD. Among the compounds, 1-(2,4-difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanol (8) is the most potent and selective of the series, with an IC50 of 0.39 µM and selectivity index of 3077; compared to BZN, 8 is 4-fold more potent and 2-fold more selective. Moreover, this compound was not mutagenic at any of the concentrations evaluated, exhibited a favorable in silico ADMET profile and showed a low potential for hepatotoxicity, as evidenced by the high values of CC50 in HepG2 cells. Furthermore, compared to BZN, derivative 8 showed a higher rate of conversion by nitroreductase and was metabolized three times more quickly when both compounds were tested at a concentration of 50 µM. The results obtained by the enzymatic evaluation and molecular docking studies suggest that, as planned, nitroazole derivatives may utilize the nitroreductase metabolism pathway as their main mechanism of action against Trypanosoma cruzi. In summary, we have successfully identified and characterized new nitrotriazole analogs, demonstrating their potential as promising candidates for the development of Chagas disease drug candidates that function via nitroreductase activation, are considerably selective and show no mutagenic potential.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Mutagênicos/farmacologia , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Triazóis/química , Nitrorredutases/metabolismo
3.
Mem Inst Oswaldo Cruz ; 113(9): e180162, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30066751

RESUMO

Eukaryotic initiation factor 5A (eIF5A) is a conserved protein with an essential role in translation elongation. Using one and two-dimensional western blotting, we showed that the eIF5A protein level was 2-fold lower in benznidazole (BZ)-resistant (BZR and 17LER) Trypanosoma cruzi populations than in their respective susceptible counterparts (BZS and 17WTS). To confirm the role of eIF5A in BZ resistance, we transfected BZS and 17WTS with the wild-type eIF5A or mutant eIF5A-S2A (in which serine 2 was replaced by alanine). Upon overexpressing eIF5A, both susceptible lines became approximately 3- and 5-fold more sensitive to BZ. In contrast, the eIF5A-S2A mutant did not alter its susceptibility to BZ. These data suggest that BZ resistance might arise from either decreasing the translation of proteins that require eIF5A, or as a consequence of differential levels of precursors for the hypusination reactions (e.g., spermidine and trypanothione), both of which alter BZ's effects in the parasite.


Assuntos
Resistência a Medicamentos/genética , Nitroimidazóis/farmacologia , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Expressão Gênica , Humanos , Fatores de Iniciação de Peptídeos/análise , Fatores de Iniciação de Peptídeos/efeitos dos fármacos , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/efeitos dos fármacos , Trypanosoma cruzi/genética , Fator de Iniciação de Tradução Eucariótico 5A
4.
Artigo em Inglês | MEDLINE | ID: mdl-28461312

RESUMO

Leishmaniasis is a neglected tropical disease that affects millions of people worldwide and represents a major public health problem. Information on protein expression patterns and functional roles within the context of Leishmania-infected human monocyte-derived macrophages (MDMs) under drug treatment conditions is essential for understanding the role of these cells in leishmaniasis treatment. We analyzed functional changes in the expression of human MDM genes and proteins during in vitro infection by Leishmania braziliensis and treatment with Glucantime (SbV), using quantitative PCR (qPCR) arrays, Western blotting, confocal microscopy, and small interfering RNA (siRNA) human gene inhibition assays. Comparison of the results from gene transcription and protein expression analyses revealed that glutathione S-transferase π1 (GSTP1), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione synthetase (GSS), thioredoxin (TRX), and ATP-binding cassette, subfamily B, member 5 (ABCB5), were strongly upregulated at both the mRNA and protein levels in human MDMs that were infected and treated, compared to the control group. Subcellular localization studies showed a primarily phagolysosomal location for the ABCB5 transporter, indicating that this protein may be involved in the transport of SbV By inducing a decrease in L. braziliensis intracellular survival in THP-1 macrophages, siRNA silencing of GSTP1, GSS, and ABCB5 resulted in an increased leishmanicidal effect of SbV exposure in vitro Our results suggest that human MDMs infected with L. braziliensis and treated with SbV express increased levels of genes participating in antioxidant defense, whereas our functional analyses provide evidence for the involvement of human MDMs in drug detoxification. Therefore, we conclude that GSS, GSTP1, and ABCB5 proteins represent potential targets for enhancing the leishmanicidal activity of Glucantime.


Assuntos
Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/patogenicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Meglumina/farmacologia , Compostos Organometálicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antioxidantes/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa Redutase/metabolismo , Glutationa S-Transferase pi/metabolismo , Glutationa Sintase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Antimoniato de Meglumina , Reação em Cadeia da Polimerase
5.
Bioorg Med Chem ; 25(6): 1889-1900, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28215783

RESUMO

Analogues of 8-chloro-N-(3-morpholinopropyl)-5H-pyrimido[5,4-b]indol-4-amine 1, a known cruzain inhibitor, were synthesized using a molecular simplification strategy. Five series of analogues were obtained: indole, pyrimidine, quinoline, aniline and pyrrole derivatives. The activity of the compounds was evaluated against the enzymes cruzain and rhodesain as well as against Trypanosoma cruzi amastigote and trypomastigote forms. The 4-aminoquinoline derivatives showed promising activity against both enzymes, with IC50 values ranging from 15 to 125µM. These derivatives were selective inhibitors for the parasitic proteases, being unable to inhibit mammalian cathepsins B and S. The most active compound against cruzain (compound 5a; IC50=15µM) is considerably more synthetically accessible than 1, while retaining its ligand efficiency. As observed for the original lead, compound 5a was shown to be a competitive enzyme inhibitor. In addition, it was also active against T. cruzi (IC50=67.7µM). Interestingly, the pyrimidine derivative 4b, although inactive in enzymatic assays, was highly active against T. cruzi (IC50=3.1µM) with remarkable selectivity index (SI=128) compared to uninfected fibroblasts. Both 5a and 4b exhibit drug-like physicochemical properties and are predicted to have a favorable ADME profile, therefore having great potential as candidates for lead optimization in the search for new drugs to treat Chagas disease.


Assuntos
Cisteína Endopeptidases/efeitos dos fármacos , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Análise Espectral/métodos , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
6.
Environ Microbiol ; 18(1): 232-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26235221

RESUMO

This study assessed the diversity of cultivable rock-associated fungi from Atacama Desert. A total of 81 fungal isolates obtained were identified as 29 Ascomycota taxa by sequencing different regions of DNA. Cladosporium halotolerans, Penicillium chrysogenum and Penicillium cf. citrinum were the most frequent species, which occur at least in four different altitudes. The diversity and similarity indices ranged in the fungal communities across the latitudinal gradient. The Fisher-α index displayed the higher values for the fungal communities obtained from the siltstone and fine matrix of pyroclastic rocks with finer grain size, which are more degraded. A total of 23 fungal extracts displayed activity against the different targets screened. The extract of P. chrysogenum afforded the compounds α-linolenic acid and ergosterol endoperoxide, which were active against Cryptococcus neoformans and methicillin-resistance Staphylococcus aureus respectively. Our study represents the first report of a new habitat of fungi associated with rocks of the Atacama Desert and indicated the presence of interesting fungal community, including species related with saprobes, parasite/pathogen and mycotoxigenic taxa. The geological characteristics of the rocks, associated with the presence of rich resident/resilient fungal communities suggests that the rocks may provide a favourable microenvironment fungal colonization, survival and dispersal in extreme conditions.


Assuntos
Ascomicetos/metabolismo , Cladosporium/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Penicillium/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Chile , Cladosporium/classificação , Cladosporium/genética , Cladosporium/isolamento & purificação , Clima Desértico , Ecologia , Ecossistema , Dados de Sequência Molecular , Penicillium/classificação , Penicillium/genética , Penicillium/isolamento & purificação
7.
Exp Parasitol ; 170: 1-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27567984

RESUMO

Lipoamide dehydrogenase (LipDH) is a flavin-containing disulfide oxidoreductase from the same group of thioredoxin reductase, glutathione reductase and trypanothione reductase. This enzyme is found in the mitochondria of all aerobic organisms where it takes part in at least three important multienzyme complexes from the citric acid cycle. In this study, we performed a phylogenetic analysis comparing the amino acid sequence of the LipDH from Trypanosoma cruzi (TcLipDH) with the LipDH from other organisms. Subsequently, the copy number of the TcLipDH gene, the mRNA and protein levels, and the enzymatic activity of the LipDH were determined in populations and strains of T. cruzi that were either resistant or susceptible to benznidazole (BZ). In silico analysis showed the presence of two TcLipDH alleles in the T. cruzi genome. It also showed that TcLipDH protein has less than 55% of identity in comparison to the human LipDH, but the active site is conserved in both of them. Southern blot results suggest that the TcLipDH is a single copy gene in the genome of the T. cruzi samples analyzed. Northern blot assays showed one transcript of 2.4 kb in all T. cruzi populations. Northern blot and Real Time RT-PCR data revealed that the TcLipDH mRNA levels were 2-fold more expressed in the BZ-resistant T. cruzi population (17LER) than in its susceptible pair (17WTS). Western blot results revealed that the TcLipDH protein level is 2-fold higher in 17LER sample in comparison to 17WTS sample. In addition, LipDH activity was higher in the 17LER population than in the 17WTS. Sequencing analysis revealed that the amino acid sequences of the TcLipDH from 17WTS and 17LER populations are identical. Our findings show that one of the mechanisms associated with in vitro-induced BZ resistance to T. cruzi correlates with upregulation of LipDH enzyme.


Assuntos
Di-Hidrolipoamida Desidrogenase/genética , Resistência a Medicamentos , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Alelos , Sequência de Aminoácidos , Animais , Northern Blotting , Southern Blotting , Clonagem Molecular , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Di-Hidrolipoamida Desidrogenase/química , Resistência a Medicamentos/genética , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Camundongos , Mitocôndrias/enzimologia , Filogenia , RNA Mensageiro/metabolismo , RNA de Protozoário/química , RNA de Protozoário/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA , Trypanosoma cruzi/genética
8.
Molecules ; 21(10)2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27735872

RESUMO

A series of novel xylitan derivatives derived from xylitol were synthesized using operationally simple procedures. A xylitan acetonide was the key intermediate used to prepare benzoate, arylsulfonate esters and 1,2,3-triazole derivatives of xylitan. These compounds were evaluated for their in vitro anti-Trypanosoma cruzi activity against trypomastigote and amastigote forms of the parasite in T. cruzi-infected cell lineages. Benznidazole was used as positive control against T. cruzi and cytotoxicity was determined in mammalian L929 cells. The arylsulfonate xylitan derivative bearing a nitro group displayed the best activity of all the compounds tested, and was slightly more potent than the reference drug benznidazole. The importance of the isopropylidene ketal moiety was established and the greater lipophilicity of these compounds suggests enhancement in cell penetration.


Assuntos
Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia , Xilitol/síntese química , Xilitol/farmacologia , Humanos , Testes de Sensibilidade Parasitária , Trypanosoma cruzi/efeitos dos fármacos , Xilitol/análogos & derivados
9.
Antimicrob Agents Chemother ; 59(8): 4770-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033728

RESUMO

Cysteine metabolism is considered essential for the crucial maintenance of a reducing environment in trypanosomatids due to its importance as a precursor of trypanothione biosynthesis. Expression, activity, functional rescue, and overexpression of cysteine synthase (CS) and cystathionine ß-synthase (CßS) were evaluated in Leishmania braziliensis promastigotes and intracellular amastigotes under in vitro stress conditions induced by hydrogen peroxide (H2O2), S-nitroso-N-acetylpenicillamine, or antimonial compounds. Our results demonstrate a stage-specific increase in the levels of protein expression and activity of L. braziliensis CS (LbrCS) and L. braziliensis CßS (LbrCßS), resulting in an increment of total thiol levels in response to both oxidative and nitrosative stress. The rescue of the CS activity in Trypanosoma rangeli, a trypanosome that does not perform cysteine biosynthesis de novo, resulted in increased rates of survival of epimastigotes expressing the LbrCS under stress conditions compared to those of wild-type parasites. We also found that the ability of L. braziliensis promastigotes and amastigotes overexpressing LbrCS and LbrCßS to resist oxidative stress was significantly enhanced compared to that of nontransfected cells, resulting in a phenotype far more resistant to treatment with the pentavalent form of Sb in vitro. In conclusion, the upregulation of protein expression and increment of the levels of LbrCS and LbrCßS activity alter parasite resistance to antimonials and may influence the efficacy of antimony treatment of New World leishmaniasis.


Assuntos
Cistationina beta-Sintase/genética , Cisteína Sintase/genética , Leishmania braziliensis/genética , Estresse Oxidativo/fisiologia , Proteínas de Protozoários/genética , Regulação para Cima/genética , Antimônio/farmacologia , Antiprotozoários/farmacologia , Linhagem Celular , Humanos , Peróxido de Hidrogênio/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Estresse Oxidativo/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Trypanosoma rangeli/efeitos dos fármacos , Trypanosoma rangeli/genética , Regulação para Cima/efeitos dos fármacos
10.
Antimicrob Agents Chemother ; 59(5): 2666-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712353

RESUMO

The pressing need for better drugs against Chagas disease, African sleeping sickness, and schistosomiasis motivates the search for inhibitors of cruzain, rhodesain, and Schistosoma mansoni CB1 (SmCB1), the major cysteine proteases from Trypanosoma cruzi, Trypanosoma brucei, and S. mansoni, respectively. Thiosemicarbazones and heterocyclic analogues have been shown to be both antitrypanocidal and inhibitory against parasite cysteine proteases. A series of compounds was synthesized and evaluated against cruzain, rhodesain, and SmCB1 through biochemical assays to determine their potency and structure-activity relationships (SAR). This approach led to the discovery of 6 rhodesain, 4 cruzain, and 5 SmCB1 inhibitors with 50% inhibitory concentrations (IC50s) of ≤ 10 µM. Among the compounds tested, the thiosemicarbazone derivative of peracetylated galactoside (compound 4i) was discovered to be a potent rhodesain inhibitor (IC50 = 1.2 ± 1.0 µM). The impact of a range of modifications was determined; removal of thiosemicarbazone or its replacement by semicarbazone resulted in virtually inactive compounds, and modifications in the sugar also diminished potency. Compounds were also evaluated in vitro against the parasites T. cruzi, T. brucei, and S. mansoni, revealing active compounds among this series.


Assuntos
Catepsina B/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Proteínas de Protozoários/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Tripanossomicidas/síntese química , Animais , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Tripanossomicidas/química , Tripanossomicidas/farmacologia
11.
Extremophiles ; 19(3): 585-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809294

RESUMO

We surveyed the diversity and capability of producing bioactive compounds from a cultivable fungal community isolated from oligotrophic soil of continental Antarctica. A total of 115 fungal isolates were obtained and identified in 11 taxa of Aspergillus, Debaryomyces, Cladosporium, Pseudogymnoascus, Penicillium and Hypocreales. The fungal community showed low diversity and richness, and high dominance indices. The extracts of Aspergillus sydowii, Penicillium allii-sativi, Penicillium brevicompactum, Penicillium chrysogenum and Penicillium rubens possess antiviral, antibacterial, antifungal, antitumoral, herbicidal and antiprotozoal activities. Bioactive extracts were examined using (1)H NMR spectroscopy and detected the presence of secondary metabolites with chemical shifts. Our results show that the fungi present in cold-oligotrophic soil from Antarctica included few dominant species, which may have important implications for understanding eukaryotic survival in cold-arid oligotrophic soils. We hypothesize that detailed further investigations may provide a greater understanding of the evolution of Antarctic fungi and their relationships with other organisms described in that region. Additionally, different wild pristine bioactive fungal isolates found in continental Antarctic soil may represent a unique source to discover prototype molecules for use in drug and biopesticide discovery studies.


Assuntos
Bioprospecção , Frio Extremo , Fungos/isolamento & purificação , Microbiota , Microbiologia do Solo , Aedes/efeitos dos fármacos , Animais , Regiões Antárticas , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/toxicidade , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/toxicidade , Citotoxinas/isolamento & purificação , Citotoxinas/toxicidade , Fungos/química , Fungos/classificação , Humanos , Inseticidas/isolamento & purificação , Inseticidas/toxicidade , Lactuca/efeitos dos fármacos , Células MCF-7
12.
Exp Parasitol ; 148: 73-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450774

RESUMO

Cyclophilin (CyP), a peptidyl-prolyl cis/trans isomerase, is a key molecule with diverse biological functions that include roles in molecular chaperoning, stress response, immune modulation, and signal transduction. In this respect, CyP could serve as a potential drug target in disease-causing parasites. Previous studies employing proteomics techniques have shown that the TcCyP19 isoform was more abundant in a benznidazole (BZ)-resistant Trypanosoma cruzi population than in its susceptible counterpart. In this study, TcCyP19 has been characterized in BZ-susceptible and BZ-resistant T. cruzi populations. Phylogenetic analysis revealed a clear dichotomy between Cyphophilin A (CyPA) sequences from trypanosomatids and mammals. Sequencing analysis revealed that the amino acid sequences of TcCyP19 were identical among the T. cruzi samples analyzed. Southern blot analysis showed that TcCyP19 is a single-copy gene, located in chromosomal bands varying in size from 0.68 to 2.2 Mb, depending on the strain of T. cruzi. Northern blot and qPCR indicated that the levels of TcCyP19 mRNA were twofold higher in drug-resistant T. cruzi populations than in their drug-susceptible counterparts. Similarly, as determined by two-dimensional gel electrophoresis immunoblot, the expression of TcCyP19 protein was increased to the same degree in BZ-resistant T. cruzi populations. No differences in TcCyP19 mRNA and protein expression levels were observed between the susceptible and the naturally resistant T. cruzi strains analyzed. Taken together, these data indicate that cyclophilin TcCyP19 expression is up-regulated at both transcriptional and translational levels in T. cruzi populations that were in vitro-induced and in vivo-selected for resistance to BZ.


Assuntos
Ciclofilinas/genética , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Ciclofilinas/química , Ciclofilinas/classificação , Ciclofilinas/metabolismo , DNA de Protozoário/análise , DNA de Protozoário/química , Resistência a Medicamentos , Dosagem de Genes , Regulação da Expressão Gênica , Genoma de Protozoário , Filogenia , RNA Mensageiro/metabolismo , RNA de Protozoário/análise , RNA de Protozoário/química , Alinhamento de Sequência , Análise de Sequência de DNA , Trypanosoma cruzi/química , Trypanosoma cruzi/efeitos dos fármacos
13.
Mem Inst Oswaldo Cruz ; 110(4): 566-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26061148

RESUMO

We describe herein the antitrypanosomal activity of 20 novel 1,3-bis(aryloxy)propan-2-amine derivatives. Compounds 2, 4, 6, 12, 15, 16 and 19 were significantly active against amastigote and trypomastigote forms, with half maximal inhibitory concentrationvalues in the range of 6-18 µM. In the cytotoxicity tests against L929 cells, only compound 4 presented selectivity index value above 10, indicating low toxicity.


Assuntos
Derivados de Benzeno/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Linhagem Celular , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária
14.
Mem Inst Oswaldo Cruz ; 110(1): 65-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25742265

RESUMO

Aiming to identify new sources of bioactive secondary metabolites, we isolated 82 endophytic fungi from stems and barks of the native Brazilian tree Caesalpinia echinata Lam. (Fabaceae). We tested their ethyl acetate extracts in several in vitro assays. The organic extracts from three isolates showed antibacterial activity against Staphylococcus aureus and Escherichia coli [minimal inhibitory concentration (MIC) 32-64 µg/mL]. One isolate inhibited the growth of Salmonella typhimurium (MIC 64 µg/mL) and two isolates inhibited the growth of Klebsiella oxytoca (MIC 64 µg/mL), Candida albicans and Candida tropicalis (MIC 64-128 µg/mL). Fourteen extracts at a concentration of 20 µg/mL showed antitumour activities against human breast cancer and human renal cancer cells, while two isolates showed anti-tumour activities against human melanoma cancer cells. Six extracts were able to reduce the proliferation of human peripheral blood mononuclear cells, indicating some degree of selective toxicity. Four isolates were able to inhibit Leishmania (Leishmania) amazonensis and one isolate inhibited Trypanosoma cruzi by at least 40% at 20 µg/mL. The trypanocidal extract obtained from Fusarium sp. [KF611679] culture was subjected to bioguided fractionation, which revealed beauvericin as the compound responsible for the observed toxicity of Fusarium sp. to T. cruzi. This depsipeptide showed a half maximal inhibitory concentration of 1.9 µg/mL (2.43 µM) in a T. cruzi cellular culture assay.


Assuntos
Caesalpinia/microbiologia , Depsipeptídeos/farmacologia , Endófitos/isolamento & purificação , Fusarium/isolamento & purificação , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Fracionamento Químico , Misturas Complexas , Primers do DNA , Depsipeptídeos/isolamento & purificação , Endófitos/classificação , Enterobacteriaceae/efeitos dos fármacos , Fusarium/metabolismo , Bacilos Gram-Positivos Formadores de Endosporo/efeitos dos fármacos , Humanos , Leishmania/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Tripanossomicidas/isolamento & purificação
15.
J Antimicrob Chemother ; 69(1): 150-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23970484

RESUMO

OBJECTIVES: To evaluate in vitro interactions between paromomycin sulphate and the antileishmanial drugs meglumine antimoniate, amphotericin B, miltefosine and azithromycin against intracellular Leishmania (Leishmania) infantum chagasi, Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis amastigotes in peritoneal mouse macrophages. METHODS: First, drug susceptibility was assessed in 3, 5 and 7 day assays, followed by drug interaction assays with a modified fixed-ratio method. An overall mean sum fractional inhibitory concentration (∑FIC) was calculated for each combination and each Leishmania species. The nature of the interactions was classified as synergistic if the mean ∑FIC was ≤ 0.5, indifferent if the mean ∑FIC was >0.5-4.0 and antagonistic if the mean ∑FIC was >4.0. RESULTS: In vitro synergism was observed for the combinations of paromomycin plus miltefosine [at 50% and 90% inhibitory concentrations (IC50 and IC90, respectively)] and paromomycin plus amphotericin B (at the IC90 level) against L. (L.) amazonensis, paromomycin plus meglumine antimoniate (at the IC50 and IC90 levels) and paromomycin plus amphotericin B (at the IC50 level) against L. (V.) braziliensis, and paromomycin plus miltefosine, paromomycin plus amphotericin B (both at the IC90 level) and paromomycin plus azithromycin (at the IC50 level) against L. (L) infantum chagasi. CONCLUSIONS: This work provides a preclinical dataset that supports future studies on multidrug treatment schedules against New World leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Sinergismo Farmacológico , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Paromomicina/farmacologia , Animais , Células Cultivadas , Concentração Inibidora 50 , Macrófagos/parasitologia , Camundongos , Testes de Sensibilidade Parasitária
16.
Microb Ecol ; 67(4): 775-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24509705

RESUMO

We surveyed diversity patterns and engaged in bioprospecting for bioactive compounds of fungi associated with the endemic macroalgae, Monostroma hariotii and Pyropia endiviifolia, in Antarctica. A total of 239 fungal isolates were obtained, which were identified to represent 48 taxa and 18 genera using molecular methods. The fungal communities consisted of endemic, indigenous and cold-adapted cosmopolitan taxa, which displayed high diversity and richness, but low dominance indices. The extracts of endemic and cold-adapted fungi displayed biological activities and may represent sources of promising prototype molecules to develop drugs. Our results suggest that macroalgae along the marine Antarctic Peninsula provide additional niches where fungal taxa can survive and coexist with their host in the extreme conditions. We hypothesise that the dynamics of richness and dominance among endemic, indigenous and cold-adapted cosmopolitan fungal taxa might be used to understand and model the influence of climate change on the maritime Antarctic mycota.


Assuntos
Biodiversidade , Clorófitas/microbiologia , Fungos/fisiologia , Rodófitas/microbiologia , Regiões Antárticas , DNA Intergênico/genética , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Geografia , Dados de Sequência Molecular , Análise de Sequência de DNA
17.
Mem Inst Oswaldo Cruz ; 109(3): 362-4, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24831550

RESUMO

Four diamines and three amino alcohols derived from 1-decanol, 1-dodecanol and 1,2-dodecanediol were evaluated in an in vitro assay against a mixture of trypomastigote and intracellular amastigote forms of Trypanosoma cruzi. Two of these compounds (6 and 7) showed better activity against both proliferative stages of T. cruzi than the positive control benznidazole, three were of similar potency (1, 2 and 5) and two were less active (3 and 4).


Assuntos
Amino Álcoois/farmacologia , Diaminas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Relação Dose-Resposta a Droga , Testes de Sensibilidade Parasitária
18.
An Acad Bras Cienc ; 86(2): 829-839, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30514008

RESUMO

Annona cornifolia A. St. -Hil. is a small annual perennial tree found in the Brazilian savannah; their green fruit is popularly used in the treatment of ulcers. The acetogenins isolated from the seeds of Annona cornifolia previously showed to possess antioxidant activity. In continuation of our investigations on the biological activities of acetogenins, four binary mixtures and ten pure adjacent bis-tetrahydrofuran annonaceous acetogenins were evaluated: the cytotoxic (against three human tumor cell lines), antifungal (against Paracoccidioides brasiliensis), trypanocidal (against Trypanosoma cruzi) and leishmanicidal (against Leishmania amazonensis) activities. Acetogenins presented cytotoxic activity confirming their potential use in anti-cancer therapy. Regarding leishmanicidal and trypanocidal activities, an inhibition of 87% of L. amazonensis amastigotes and 100% of T. cruzi amastigotes and trypomastigotes was observed, when tested at the concentration of 20 µg mL-1. Moreover, six acetogenins showed more activity against all the three tested isolates of P. brasiliensis than trimethoprim-sulfamethoxazole, a drug used for treating paracoccidioidomycosis. Thus, acetogenins may be an alternative in treating a number of diseases that have a huge impact on millions of people worldwide. This paper reports for the first time the antifungal, leishmanicidal and trypanocidal activities for these acetogenins.

19.
Extremophiles ; 16(1): 95-103, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072308

RESUMO

A total of 564 isolates of endophytic fungi were recovered from the plants Deschampsia antarctica and Colobanthus quitensis collected from Antarctica. The isolates were screened against parasites Leishmania amazonensis and Trypanosoma cruzi and against the human tumour cell lines. Of the 313 fungal isolates obtained from D. antarctica and 251 from C. quitensis, 25 displayed biological activity. Nineteen extracts displayed leishmanicidal activity, and six inhibited the growth of at least one tumour cell line. These fungi belong to 19 taxa of the genera Alternaria, Antarctomyces, Cadophora, Davidiella, Helgardia, Herpotrichia, Microdochium, Oculimacula, Phaeosphaeria and one unidentified fungus. Extracts of 12 fungal isolates inhibited the proliferation of L. amazonesis at a low IC(50) of between 0.2 and 12.5 µg ml(-1). The fungus Phaeosphaeria herpotrichoides displayed only leishmanicidal activity with an IC(50) of 0.2 µg ml(-1), which is equivalent to the inhibitory value of amphotericin B. The extract of Microdochium phragmitis displayed specific cytotoxic activity against the UACC-62 cell line with an IC(50) value of 12.5 µg ml(-1). Our results indicate that the unique angiosperms living in Antarctica shelter an interesting bioactive fungal community that is able to produce antiprotozoal and antitumoral molecules. These molecules may be used to develop new leishmanicidal and anticancer drugs.


Assuntos
Caryophyllaceae/microbiologia , Endófitos/fisiologia , Fungos/fisiologia , Leishmania , Neoplasias , Poaceae/microbiologia , Animais , Regiões Antárticas , Linhagem Celular Tumoral , Endófitos/química , Fungos/química , Humanos , Concentração Inibidora 50
20.
Mem Inst Oswaldo Cruz ; 107(4): 494-502, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22666860

RESUMO

Ascorbate peroxidases (APX) are class I heme-containing enzymes that convert hydrogen peroxide into water molecules. The gene encoding APX has been characterized in 11 strains of Trypanosoma cruzi that are sensitive or resistant to benznidazole (BZ). Bioinformatic analysis revealed the presence of two complete copies of the T. cruzi APX (TcAPX) gene in the genome of the parasite, while karyotype analysis showed that the gene was present in the 2.000-kb chromosome of all of the strains analyzed. The sequence of TcAPX exhibited greater levels of similarity to those of orthologous enzymes from Leishmania spp than to APXs from the higher plant Arabidopsis thaliana. Northern blot and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed no significant differences in TcAPX mRNA levels between the T. cruzi strains analyzed. On the other hand, Western blots showed that the expression levels of TcAPX protein were, respectively, two and three-fold higher in T. cruzi populations with in vitro induced (17 LER) and in vivo selected (BZR) resistance to BZ, in comparison with their corresponding susceptible counterparts. Moreover, the two BZ-resistant populations exhibited higher tolerances to exogenous hydrogen peroxide than their susceptible counterparts and showed TcAPX levels that increased in a dose-dependent manner following exposure to 100 and 200 µM hydrogen peroxide.


Assuntos
Ascorbato Peroxidases/análise , Resistência a Medicamentos/genética , Peróxido de Hidrogênio/farmacologia , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Ascorbato Peroxidases/genética , Western Blotting , DNA de Protozoário/análise , Eletroforese em Gel de Campo Pulsado , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Trypanosoma cruzi/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa