Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Rev Mol Cell Biol ; 22(1): 22-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33188273

RESUMO

Mechanical forces shape cells and tissues during development and adult homeostasis. In addition, they also signal to cells via mechanotransduction pathways to control cell proliferation, differentiation and death. These processes require metabolism of nutrients for both energy generation and biosynthesis of macromolecules. However, how cellular mechanics and metabolism are connected is still poorly understood. Here, we discuss recent evidence indicating how the mechanical cues exerted by the extracellular matrix (ECM), cell-ECM and cell-cell adhesion complexes influence metabolic pathways. Moreover, we explore the energy and metabolic requirements associated with cell mechanics and ECM remodelling, implicating a reciprocal crosstalk between cell mechanics and metabolism.


Assuntos
Matriz Extracelular/metabolismo , Homeostase , Mecanotransdução Celular , Redes e Vias Metabólicas , Animais , Adesão Celular , Diferenciação Celular , Humanos
2.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29650681

RESUMO

YAP/TAZ, downstream transducers of the Hippo pathway, are powerful regulators of cancer growth. How these factors control proliferation remains poorly defined. Here, we found that YAP/TAZ directly regulate expression of key enzymes involved in deoxynucleotide biosynthesis and maintain dNTP precursor pools in human cancer cells. Regulation of deoxynucleotide metabolism is required for YAP-induced cell growth and underlies the resistance of YAP-addicted cells to chemotherapeutics targeting dNTP synthesis. During RAS-induced senescence, YAP/TAZ bypass RAS-mediated inhibition of nucleotide metabolism and control senescence. Endogenous YAP/TAZ targets and signatures are inhibited by RAS/MEK1 during senescence, and depletion of YAP/TAZ is sufficient to cause senescence-associated phenotypes, suggesting a role for YAP/TAZ in suppression of senescence. Finally, mechanical cues, such as ECM stiffness and cell geometry, regulate senescence in a YAP-dependent manner. This study indicates that YAP/TAZ couples cell proliferation with a metabolism suited for DNA replication and facilitates escape from oncogene-induced senescence. We speculate that this activity might be relevant during the initial phases of tumour progression or during experimental stem cell reprogramming induced by YAP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Nucleotídeos/biossíntese , Fosfoproteínas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Reprogramação Celular/genética , Senescência Celular/genética , Humanos , Neoplasias/patologia , Nucleotídeos/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
3.
J Cell Sci ; 133(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996398

RESUMO

YAP and TAZ proteins are transcriptional coactivators encoded by paralogous genes, which shuttle between the cytoplasm and the nucleus in response to multiple inputs, including the Hippo pathway. In the nucleus, they pair with DNA-binding factors of the TEAD family to regulate gene expression. Nuclear YAP/TAZ promote cell proliferation, organ overgrowth, survival to stress and dedifferentiation of post-mitotic cells into their respective tissue progenitors. YAP/TAZ are required for growth of embryonic tissues, wound healing and organ regeneration, where they are activated by cell-intrinsic and extrinsic cues. Surprisingly, this activity is dispensable in many adult self-renewing tissues, where YAP/TAZ are constantly kept in check. YAP/TAZ lay at the center of a complex regulatory network including cell-autonomous factors but also cell- and tissue-level structural features such as the mechanical properties of the cell microenvironment, the establishment of cell-cell junctions and of basolateral tissue polarity. Enhanced levels and activity of YAP/TAZ are observed in many cancers, where they sustain tumor growth, drug resistance and malignancy. In this Cell Science at a Glance article and the accompanying poster, we review the biological functions of YAP/TAZ and their regulatory mechanisms, and highlight their position at the center of a complex signaling network.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/genética , Aciltransferases , Animais , Humanos , Proteínas de Sinalização YAP
4.
J Hepatol ; 71(1): 130-142, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30878582

RESUMO

BACKGROUND & AIMS: In vitro, cell function can be potently regulated by the mechanical properties of cells and of their microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by regulating intracellular pathways, including the transcriptional coactivators YAP/TAZ. Whether mechanical cues are relevant for in vivo regulation of adult organ homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS: We developed Capzb conditional knockout mice and obtained primary fibroblasts to characterize the role of CAPZ in vitro. In vivo functional analyses were carried out by inducing Capzb inactivation in adult hepatocytes, manipulating YAP/Hippo activity by hydrodynamic tail vein injections, and treating mice with the ROCK inhibitor, fasudil. RESULTS: We found that the F-actin capping protein CAPZ restrains actomyosin contractility: Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small cellular geometry; in vivo, it induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS: These results indicate a previously unsuspected role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated state and to regulate organ size. More generally, it indicates for the first time that mechanotransduction has a physiological role in maintaining liver homeostasis in mammals. LAY SUMMARY: The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. Herein, we found that inactivation of the protein CAPZ alters the mechanical properties of cells and liver tissues, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals in the maintenance of adult liver homeostasis.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína de Capeamento de Actina CapZ/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hepatócitos/fisiologia , Fígado , Mecanotransdução Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Elasticidade , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fígado/fisiopatologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Proteínas de Sinalização YAP
5.
Lab Invest ; 98(2): 248-257, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29035383

RESUMO

The Nm23/NME gene family has been under intensive study since Nm23H1/NME1 was identified as the first metastasis suppressor. Inverse correlation between the expression levels of NME1/2 and prognosis has indeed been demonstrated in different tumor cohorts. Interestingly, the presence of NME proteins in the extracellular environment in normal and tumoral conditions has also been noted. In many reported cases, however, these extracellular NME proteins exhibit anti-differentiation or oncogenic functions, contradicting their canonical anti-metastatic action. This emerging field thus warrants further investigation. In this review, we summarize the current understanding of extracellular NME proteins. A role in promoting stem cell pluripotency and inducing development of central nervous system as well as a neuroprotective function of extracellular NME have been suggested. Moreover, a tumor-promoting function of extracellular NME also emerged at least in some tumor cohorts. In this complex scenario, the secretory mechanism through which NME proteins exit cells is far from being understood. Recently, some evidence obtained in the Drosophila and cancer cell line models points to the involvement of Dynamin in controlling the balance between intra- and extracellular levels of NME. Further analyses on extracellular NME will lead to a better understanding of its physiological function and in turn will allow understanding of how its deregulation contributes to carcinogenesis.


Assuntos
Espaço Extracelular/enzimologia , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Neoplasias/enzimologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Nucleosídeo NM23 Difosfato Quinases/genética , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia
6.
Cell Mol Life Sci ; 73(2): 409-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26223269

RESUMO

Epithelial morphogenesis contributes greatly to the development and homeostasis of the organs and body parts. Here, we analysed the consequences of impaired ecdysone receptor (EcR) signalling in the Drosophila follicular epithelium. Besides governing cell growth, the three EcR isoforms act redundantly in controlling follicle cell positioning. Flattening of the microvilli and an aberrant actin cytoskeleton arise from defective EcR signalling in follicle cells, and these defects impact on the organisation of the oocyte membrane. We found that this signalling governs a complex molecular network since its impairment affects key molecules as atypical protein kinase C and activated Moesin. Interestingly, the activity of the transcription factor Tramtrack69 isoform is required for microvilli and their actin core morphogenesis as well as for follicle cell positioning. In conclusion, our findings provide evidence of novel roles for EcR signalling and Tramtrack69 transcription factor in controlling stage-specific differentiation events that take place in the follicular epithelium.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Microvilosidades/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Receptores de Esteroides/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Drosophila/metabolismo , Drosophila/ultraestrutura , Feminino , Microvilosidades/ultraestrutura , Oócitos/citologia , Oócitos/metabolismo , Oócitos/ultraestrutura , Oogênese , Folículo Ovariano/ultraestrutura
7.
PLoS Genet ; 10(4): e1004287, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722212

RESUMO

The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone, and mammalian Ecd homologs have been implicated in cell cycle regulation and cancer. Why the Drosophila ecd1 mutants lack ecdysone has not been resolved. Here, we show that in Drosophila cells, Ecd directly interacts with core components of the U5 snRNP spliceosomal complex, including the conserved Prp8 protein. In accord with a function in pre-mRNA splicing, Ecd and Prp8 are cell-autonomously required for survival of proliferating cells within the larval imaginal discs. In the steroidogenic prothoracic gland, loss of Ecd or Prp8 prevents splicing of a large intron from CYP307A2/spookier (spok) pre-mRNA, thus eliminating this essential ecdysone-biosynthetic enzyme and blocking the entry to metamorphosis. Human Ecd (hEcd) can substitute for its missing fly ortholog. When expressed in the Ecd-deficient prothoracic gland, hEcd re-establishes spok pre-mRNA splicing and protein expression, restoring ecdysone synthesis and normal development. Our work identifies Ecd as a novel pre-mRNA splicing factor whose function has been conserved in its human counterpart. Whether the role of mammalian Ecd in cancer involves pre-mRNA splicing remains to be discovered.


Assuntos
Proteínas de Drosophila/genética , Precursores de RNA/genética , Splicing de RNA/genética , Esteroides/metabolismo , Animais , Ciclo Celular/genética , Células Cultivadas , Drosophila melanogaster/genética , Ecdisona/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/genética , Mutação/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/genética
8.
Methods Mol Biol ; 2811: 185-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39037659

RESUMO

Reactive oxygen species (ROS) production can occur both as a physiological response and because of oxidative stress. ROS are not only the end product of nonfunctional cell processes but also signaling molecules that can regulate cell and tissue homeostasis. Recently, we have discovered that metastatic breast cancer cells that lay dormant in the lung microenvironment activate mitochondrial ROS production in response to the mechanical properties of the ECM, which triggers an antioxidant response mediated by the NRF2 transcription factor. In turn, this response protects dormant metastatic cells from cisplatin chemotherapy. Many tools have been developed to monitor ROS production in cells in culture, while our ability to detect this in vivo remains limited. Here we describe a detailed protocol for determination of ROS in metastatic cells in the mouse lung tissue by detecting 4-hydroxy-2-noneal (4HNE) adducts formation in fixed tissues.


Assuntos
Neoplasias da Mama , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estresse Oxidativo
9.
Trends Cell Biol ; 33(12): 1049-1061, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236902

RESUMO

Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.


Assuntos
Mecanotransdução Celular , Organelas , Humanos , Organelas/metabolismo , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membrana Celular/metabolismo
10.
Front Cell Dev Biol ; 11: 1071037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994106

RESUMO

Rewiring of mitochondrial metabolism has been described in different cancers as a key step for their progression. Calcium (Ca2+) signaling regulates mitochondrial function and is known to be altered in several malignancies, including triple negative breast cancer (TNBC). However, whether and how the alterations in Ca2+ signaling contribute to metabolic changes in TNBC has not been elucidated. Here, we found that TNBC cells display frequent, spontaneous inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations, which are sensed by mitochondria. By combining genetic, pharmacologic and metabolomics approaches, we associated this pathway with the regulation of fatty acid (FA) metabolism. Moreover, we demonstrated that these signaling routes promote TNBC cell migration in vitro, suggesting they might be explored to identify potential therapeutic targets.

11.
Redox Biol ; 68: 102962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029455

RESUMO

Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Selênio , Humanos , Pâncreas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Peroxidação de Lipídeos , Neoplasias Pancreáticas
12.
Nat Commun ; 14(1): 3962, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407555

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity. Among the identified suppressors, linked to HD-associated processes, we focus on Metal response element binding transcription factor 1 (Mtf1). Forced expression of Mtf1 counteracts cell death and oxidative stress caused by mHTT in mouse ESCs and in human neuronal precursor cells. In zebrafish, Mtf1 reduces malformations and apoptosis induced by mHTT. In R6/2 mice, Mtf1 ablates motor defects and reduces mHTT aggregates and oxidative stress. Our screening strategy enables a quick in vitro identification of promising suppressor genes and their validation in vivo, and it can be applied to other monogenic diseases.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Modelos Animais de Doenças , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Doença de Huntington/metabolismo , Neurônios/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
13.
Nat Cell Biol ; 24(2): 168-180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165418

RESUMO

Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Mecanotransdução Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Junções Célula-Matriz/efeitos dos fármacos , Junções Célula-Matriz/metabolismo , Junções Célula-Matriz/patologia , Dinaminas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Oxirredução , Estresse Oxidativo , Fatores de Alongamento de Peptídeos/metabolismo , Microambiente Tumoral
14.
Cancers (Basel) ; 13(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670926

RESUMO

(1) Background: metastatic relapse following a prolonged period of disease-free survival is a common cause of mortality for many cancer patients. Disseminated dormant cancer cells (DDCCs) lie below the radar before waking up years, or even decades, after the removal of the primary tumor. This implies that they are able to survive in a latent state in a foreign environment for an extended period of time supported by intrinsic and extrinsic factors still to be elucidated. (2) Methods: we employed a coculture of DDCCs with lung epithelial cells together with RNA sequencing analysis to understand the overlap in gene transcription between in vivo and cocultured DDCCs. (3) Results: we found a significant overlap between the processes activated in DDCCs from lungs and in the coculture, as well as in alveolar type I cells in vivo and in coculture. We identified the transcription factor EB (TFEB)-lysosomal axis as a relevant process activated in DDCCs upon dissemination to the lung and confirmed the results in our lung coculture. Interestingly, breast cancer patients with a higher expression of TFEB targets show increased likelihood of developing relapses. (4) Conclusions: we propose that lysosomal accumulation following TFEB activation is an important feature of breast cancer DDCCs that might be exploited for future therapeutic interventions.

15.
Commun Biol ; 4(1): 763, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155338

RESUMO

Mechanical forces control cell behavior, including cancer progression. Cells sense forces through actomyosin to activate YAP. However, the regulators of F-actin dynamics playing relevant roles during mechanostransduction in vitro and in vivo remain poorly characterized. Here we identify the Fascin1 F-actin bundling protein as a factor that sustains YAP activation in response to ECM mechanical cues. This is conserved in the mouse liver, where Fascin1 regulates YAP-dependent phenotypes, and in human cholangiocarcinoma cell lines. Moreover, this is relevant for liver tumorigenesis, because Fascin1 is required in the AKT/NICD cholangiocarcinogenesis model and it is sufficient, together with AKT, to induce cholangiocellular lesions in mice, recapitulating genetic YAP requirements. In support of these findings, Fascin1 expression in human intrahepatic cholangiocarcinomas strongly correlates with poor patient prognosis. We propose that Fascin1 represents a pro-oncogenic mechanism that can be exploited during intrahepatic cholangiocarcinoma development to overcome a mechanical tumor-suppressive environment.


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Colangiocarcinoma/etiologia , Mecanotransdução Celular/fisiologia , Proteínas dos Microfilamentos/fisiologia , Fatores de Transcrição/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Animais , Proteína de Capeamento de Actina CapZ/fisiologia , Moléculas de Adesão Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Fosfoproteínas/fisiologia
16.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802447

RESUMO

Late relapse of disseminated cancer cells is a common feature of breast and prostate tumors. Several intrinsic and extrinsic factors have been shown to affect quiescence and reawakening of disseminated dormant cancer cells (DDCCs); however, the signals and processes sustaining the survival of DDCCs in a foreign environment are still poorly understood. We have recently shown that crosstalk with lung epithelial cells promotes survival of DDCCs of estrogen receptor-positive (ER+) breast tumors. By using a lung organotypic system and in vivo dissemination assays, here we show that the TFEB-lysosomal axis is activated in DDCCs and that it is modulated by the pro-survival ephrin receptor EphB6. TFEB lysosomal direct targets are enriched in DDCCs in vivo and correlate with relapse in ER+ breast cancer patients. Direct coculture of DDCCs with alveolar type I-like lung epithelial cells and dissemination in the lung drive lysosomal accumulation and EphB6 induction. EphB6 contributes to survival, TFEB transcriptional activity, and lysosome formation in DDCCs in vitro and in vivo. Furthermore, signaling from EphB6 promotes the proliferation of surrounding lung parenchymal cells in vivo. Our data provide evidence that EphB6 is a key factor in the crosstalk between disseminated dormant cancer cells and the lung parenchyma and that the TFEB-lysosomal pathway plays an important role in the persistence of DDCCs.

17.
Dev Biol ; 328(2): 541-51, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19389369

RESUMO

Ecdysone signaling plays key roles in Drosophila oogenesis, as its activity is required at multiple steps during egg chamber maturation. Recently, its involvement has been reported on eggshell production by controlling chorion gene transcription and amplification. Here, we present evidence that ecdysone signaling also controls the expression of the eggshell gene VM32E, whose product is a component of vitelline membrane and endochorion layers. Specifically blocking the function of the different Ecdysone receptor (EcR) isoforms we demonstrate that EcR-B1 is responsible for ecdysone-mediated VM32E transcriptional regulation. Moreover, we show that the EcR partner Ultraspiracle (Usp) is also necessary for VM32E expression. By analyzing the activity of specific VM32E regulatory regions in usp(2) clones we identify the promoter region mediating ecdysone-dependent VM32E expression. By in vitro binding assay and site-directed mutagenesis we demonstrate that this region contains a Usp binding site necessary for VM32E regulation. Our results further support the crucial role of ecdysone signaling in controlling transcription of eggshell structural genes and suggest that the heterodimeric complex EcR-B1/Usp mediates the ecdysone-dependent VM32E transcriptional activation in the main body follicle cells.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Proteínas do Ovo/fisiologia , Receptores de Esteroides/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Ecdisona/fisiologia , Proteínas do Ovo/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutagênese Sítio-Dirigida , Oócitos/fisiologia , Oogênese , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Receptores de Esteroides/genética , Fatores de Transcrição/genética
18.
Genetics ; 181(1): 165-75, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015542

RESUMO

Proper assembly and maintenance of epithelia are critical for normal development and homeostasis. Here, using the Drosophila ovary as a model, we identify a role for the B1 isoform of the ecdysone receptor (EcR-B1) in this process. We performed a reverse genetic analysis of EcR-B1 function during oogenesis and demonstrate that silencing of this receptor isoform causes loss of integrity and multilayering of the follicular epithelium. We show that multilayered follicle cells lack proper cell polarity with altered distribution of apical and basolateral cell polarity markers including atypical-protein kinase C (aPKC), Discs-large (Dlg), and Scribble (Scrib) and aberrant accumulation of adherens junctions and F-actin cytoskeleton. We find that the EcR-B1 isoform is required for proper follicle cell polarity both during early stages of oogenesis, when follicle cells undergo the mitotic cell cycle, and at midoogenesis when these cells stop dividing and undergo several endocycles. In addition, we show that the EcR-B1 isoform is required during early oogenesis for follicle cell survival and that disruption of its function causes apoptotic cell death induced by caspase.


Assuntos
Polaridade Celular , Drosophila melanogaster/citologia , Folículo Ovariano/citologia , Receptores de Esteroides/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Sobrevivência Celular , Células Clonais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Ativação Enzimática , Epitélio/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Proteínas Inibidoras de Apoptose/metabolismo , Oogênese , Folículo Ovariano/enzimologia , Óvulo/citologia , Óvulo/metabolismo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/metabolismo , Receptores de Esteroides/deficiência
19.
Nat Cell Biol ; 21(3): 338-347, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718857

RESUMO

Extracellular matrix (ECM) mechanical cues have powerful effects on cell proliferation, differentiation and death. Here, starting from an unbiased metabolomics approach, we identify synthesis of neutral lipids as a general response to mechanical signals delivered by cell-matrix adhesions. Extracellular physical cues reverberate on the mechanical properties of the Golgi apparatus and regulate the Lipin-1 phosphatidate phosphatase. Conditions of reduced actomyosin contractility lead to inhibition of Lipin-1, accumulation of SCAP/SREBP to the Golgi apparatus and activation of SREBP transcription factors, in turn driving lipid synthesis and accumulation. This occurs independently of YAP/TAZ, mTOR and AMPK, and in parallel to feedback control by sterols. Regulation of SREBP can be observed in a stiffened diseased tissue, and contributes to the pro-survival activity of ROCK inhibitors in pluripotent stem cells. We thus identify a general mechanism centered on Lipin-1 and SREBP that links the physical cell microenvironment to a key metabolic pathway.


Assuntos
Matriz Extracelular/metabolismo , Metabolismo dos Lipídeos , Fosfatidato Fosfatase/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Junções Célula-Matriz/metabolismo , Microambiente Celular , Sinais (Psicologia) , Complexo de Golgi/metabolismo , Humanos , Metabolômica/métodos , Transdução de Sinais
20.
Insect Biochem Mol Biol ; 95: 26-32, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29559251

RESUMO

Polydnaviruses (PDV) are viral symbionts associated with ichneumonid and braconid wasps parasitizing moth larvae, which are able to disrupt the host immune response and development, as well as a number of other physiological pathways. The immunosuppressive role of PDV has been more intensely investigated, while very little is known about the PDV-encoded factors disrupting host development. Here we address this research issue by further expanding the functional analysis of ankyrin genes encoded by the bracovirus associated with Toxoneuron nigriceps (Hymenoptera, Braconidae). In a previous study, using Drosophila melanogaster as experimental model system, we demonstrated the negative impact of TnBVank1 impairing the ecdysone biosynthesis by altering endocytic traffic in prothoracic gland cells. With a similar approach here we demonstrate that another member of the viral ank gene family, TnBVank3, does also contribute to the disruption of ecdysone biosynthesis, but with a completely different mechanism. We show that its expression in Drosophila prothoracic gland (PG) blocks the larval-pupal transition by impairing the expression of steroidogenic genes. Furthermore, we found that TnBVank3 affects the expression of genes involved in the insulin/TOR signaling and the constitutive activation of the insulin pathway in the PG rescues the pupariation impairment. Collectively, our data demonstrate that TnBVANK3 acts as a virulence factor by exerting a synergistic and non-overlapping function with TnBVANK1 to disrupt the ecdysone biosynthesis.


Assuntos
Anquirinas/metabolismo , Ecdisona/biossíntese , Regulação da Expressão Gênica , Himenópteros/virologia , Polydnaviridae/metabolismo , Proteínas Virais/metabolismo , Animais , Anquirinas/genética , Drosophila melanogaster , Ecdisona/genética , Polydnaviridae/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa