Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Biol Sci ; 289(1974): 20220266, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538779

RESUMO

Phylogenetic comparative studies suggest that the direction of deviation from bilateral symmetry (sidedness) might evolve through genetic assimilation; however, the changes in sidedness inheritance remain largely unknown. We investigated the evolution of genital asymmetry in fish of the family Anablepidae, in which males' intromittent organ (the gonopodium, a modified anal fin) bends asymmetrically to the left or the right. In most species, males show a 1 : 1 ratio of left-to-right-sided gonopodia. However, we found that in three species left-sided males are significantly more abundant than right-sided ones. We mapped sidedness onto a new molecular phylogeny, finding that this left-sided bias likely evolved independently three times. Our breeding experiment in a species with an excess of left-sided males showed that sires produced more left-sided offspring independently of their own sidedness. We propose that sidedness might be inherited as a threshold trait, with different thresholds across species. This resolves the apparent paradox that, while there is evidence for the evolution of sidedness, commonly there is a lack of support for its heritability and no response to artificial selection. Focusing on the heritability of the left : right ratio of offspring, rather than on individual sidedness, is key for understanding how the direction of asymmetry becomes genetically assimilated.


Assuntos
Ciprinodontiformes , Genitália , Animais , Ciprinodontiformes/genética , Masculino , Filogenia
2.
Proc Biol Sci ; 287(1930): 20200969, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32635868

RESUMO

Animal genitalia vary considerably across taxa, with divergence in many morphological traits, including striking departures from symmetry. Different mechanisms have been proposed to explain this diversity, mostly assuming that at least some of the phenotypic variation is heritable. However, heritability of the direction of genital asymmetry has been rarely determined. Anablepidae are internally fertilizing fish where the anal fin of males has been modified into an intromittent organ that transfers sperm into the gonopore of females. Males of anablepid fishes exhibit asymmetric genitalia, and both left- and right-sided individuals are commonly found at similar proportions within populations (i.e. antisymmetry). Although this polymorphism was described over a century ago, there have been no attempts to determine if genital asymmetry has a genetic basis and whether the different morphs are accumulating genetic differences, as might be expected since in some species females have also asymmetric gonopores and thereby can only be fertilized by compatible asymmetric males. We address this issue by combining breeding experiments with genome-wide data (ddRAD markers) in representative species of the two anablepid genera with asymmetric genitalia: Anableps and Jenynsia. Breeding experiments showed that all offspring were asymmetric, but their morphotype (i.e. right- or left-sided) was independent of parental morphotype, implying that the direction of asymmetry does not have a strong genetic component. Consistent with this conclusion, association analyses based on approximately 25 000 SNPs did not identify markers significantly associated with the direction of genital asymmetry and there was no evidence of population structure between left- and right-sided individuals. These results suggest that the direction of genital asymmetry in anablepid fishes might be stochastic, a commonly observed pattern in species with antisymmetry in morphological traits.


Assuntos
Evolução Biológica , Peixes/anatomia & histologia , Genitália/anatomia & histologia , Animais , Cruzamento , Feminino , Fertilização , Masculino , Filogenia , Comportamento Sexual Animal
3.
Mol Ecol ; 29(8): 1476-1493, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32215986

RESUMO

Cichlid fishes' famous diversity in body coloration is accompanied by a highly diverse and complex visual system. Although cichlids possess an unusually high number of seven cone opsin genes, they express only a subset of these during their ontogeny, accounting for their astonishing interspecific variation in visual sensitivities. Much of this diversity is thought to have been shaped by natural selection as cichlids inhabit a variety of habitats with distinct light environments. Also, sexual selection might have contributed to the observed visual diversity, and sexual dimorphism in coloration potentially co-evolved with sexual dimorphism in opsin expression. We investigated sex-specific opsin expression of several cichlids from Africa and the Neotropics and collected and integrated data sets on sex-specific body coloration, species-specific visual sensitivities, lens transmission and habitat light properties for some of them. We comparatively analysed this wide range of molecular and ecological data, illustrating how integrative approaches can address specific questions on the factors and mechanisms driving diversification, and the evolution of cichlid vision in particular. We found that both sexes expressed opsins at the same levels-even in sexually dimorphic cichlid species-which argues against coevolution of sexual dichromatism and differences in sex-specific visual sensitivity. Rather, a combination of environmental light properties and body coloration shaped the diversity in spectral sensitivities among cichlids. We conclude that although cichlids are particularly colourful and diverse and often sexually dimorphic, it would appear that natural rather than sexual selection is a more powerful force driving visual diversity in this hyperdiverse lineage.


Assuntos
Ciclídeos , Opsinas dos Cones , África , Animais , Ciclídeos/genética , Opsinas dos Cones/genética , Ecossistema , Evolução Molecular , Feminino , Masculino , Seleção Sexual
4.
Artigo em Inglês | MEDLINE | ID: mdl-38438186

RESUMO

Hybridization, or interbreeding between different taxa, was traditionally considered to be rare and to have a largely detrimental impact on biodiversity, sometimes leading to the breakdown of reproductive isolation and even to the reversal of speciation. However, modern genomic and analytical methods have shown that hybridization is common in some of the most diverse clades across the tree of life, sometimes leading to rapid increase of phenotypic variability, to introgression of adaptive alleles, to the formation of hybrid species, and even to entire species radiations. In this review, we identify consensus among diverse research programs to show how the field has progressed. Hybridization is a multifaceted evolutionary process that can strongly influence species formation and facilitate adaptation and persistence of species in a rapidly changing world. Progress on testing this hypothesis will require cooperation among different subdisciplines.

5.
Ecol Evol ; 12(3): e8751, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356554

RESUMO

High-throughput DNA sequencing technologies make it possible now to sequence entire genomes relatively easily. Complete genomic information obtained by whole-genome resequencing (WGS) can aid in identifying and delineating species even if they are extremely young, cryptic, or morphologically difficult to discern and closely related. Yet, for taxonomic or conservation biology purposes, WGS can remain cost-prohibitive, too time-consuming, and often constitute a "data overkill." Rapid and reliable identification of species (and populations) that is also cost-effective is made possible by species-specific markers that can be discovered by WGS. Based on WGS data, we designed a PCR restriction fragment length polymorphism (PCR-RFLP) assay for 19 Neotropical Midas cichlid populations (Amphilophus cf. citrinellus), that includes all 13 described species of this species complex. Our work illustrates that identification of species and populations (i.e., fish from different lakes) can be greatly improved by designing genetic markers using available "high resolution" genomic information. Yet, our work also shows that even in the best-case scenario, when whole-genome resequencing information is available, unequivocal assignments remain challenging when species or populations diverged very recently, or gene flow persists. In summary, we provide a comprehensive workflow on how to design RFPL markers based on genome resequencing data, how to test and evaluate their reliability, and discuss the benefits and pitfalls of our approach.

6.
Ecol Evol ; 11(23): 17496-17508, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938524

RESUMO

Exaggerated secondary sexual characteristics are apparently costly and seem to defy natural selection. This conundrum promoted the theory of sexual selection. Accordingly, exaggerated secondary sexual characteristics might be ornaments on which female choice is based and/or armaments used during male-male competition. Males of many cichlid fish species, including the adaptive radiation of Nicaraguan Midas cichlids, develop a highly exaggerated nuchal hump, which is thought to be a sexually selected trait. To test this hypothesis, we conducted a series of behavioral assays in F2 hybrids obtained from crossing a species with a relatively small hump and one with an exaggerated hump. Mate-choice experiments showed a clear female preference for males with large humps. In an open-choice experiment with limited territories, couples including large humped males were more successful in acquiring these territories. Therefore, nuchal humps appear to serve dual functions as an ornament for attracting mates and as an armament for direct contest with rivals. Although being beneficial in terms of sexual selection, this trait also imposes fitness costs on males possessing disproportionally large nuchal humps since they exhibit decreased endurance and increased energetic costs when swimming. We conclude that these costs illustrate trade-offs associated with large hump size between sexual and natural selection, which causes the latter to limit further exaggeration of this spectacular male trait.

7.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190535, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32654645

RESUMO

Cichlid fishes are exceptionally species-rich, speciated at explosive rates and, hence, are a model system in speciation research. Yet, their reproductive isolating barriers have, so far, not been comprehensively studied. Here, we review current knowledge on pre- and postzygotic mechanisms in cichlids. While premating isolation is the norm in cichlids, its strength varies across lineages and with the geographical setting. Moreover, manipulations of ambient conditions tended to reduce assortative mating among closely related species, suggesting that premating isolation in cichlids is often fragile and context dependent. The observed lack of complete reproductive isolation is supported by past and present hybridization events that have contributed to diversity by creating novel allelic combinations. On the other hand, our meta-analysis highlights that intrinsic postzygotic isolation might accumulate faster than assumed. Mild forms of genetic incompatibilities, such as sex ratio distortion, can already be observed among closely related species. Therefore, cessation of gene flow by strong reproductive isolation in cichlids requires a combination of premating prezygotic isolation supplemented with intrinsic and extrinsic postzygotic barriers. Further, we suggest crucial next steps to improve our knowledge about reproductive barriers in cichlids to understand the evolutionary dynamics of pre- and postzygotic isolation mechanisms during adaptive radiations. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Assuntos
Ciclídeos/genética , Fluxo Gênico , Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Feminino , Masculino
8.
Curr Zool ; 66(1): 71-81, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32467707

RESUMO

Asymmetries in bilateral organisms attract a lot of curiosity given that they are conspicuous departures from the norm. They allow the investigation of the integration at different levels of biological organization. Here we study whether and how behavioral and asymmetrical anatomical traits co-evolved and work together. We ask if asymmetry is determined locally for each trait or at a whole individual level in a species bearing conspicuous asymmetrical genitalia. Asymmetric genitalia evolved in many species; however, in most cases the direction of asymmetry is fixed. Therefore, it has been rarely determined if there is an association between the direction of asymmetry in genitalia and other traits. In onesided livebearer fish of the genus Jenynsia (Cyprinodontiformes, Anablepidae), the anal fin of males is modified into a gonopodium, an intromittent organ that serves to inseminate females. The gonopodium shows a conspicuous asymmetry, with its tip bending either to the left or the right. By surveying 13 natural populations of Jenynsia lineata, we found that both genital morphs are equally common in wild populations. In a series of experiments in a laboratory population, we discovered asymmetry and lateralization for multiple other traits; yet, the degree of integration varied highly among them. Lateralization in exploratory behavior in response to different stimuli was not associated with genital morphology. Interestingly, the direction of genital asymmetry was positively correlated with sidedness of mating preference and the number of neuromasts in the lateral line. This suggests integration of functionally linked asymmetric traits; however, there is no evidence that asymmetry is determined at the whole individual level in our study species.

9.
Microbiome ; 8(1): 149, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121541

RESUMO

BACKGROUND: Recent increases in understanding the ecological and evolutionary roles of microbial communities have underscored the importance of their hosts' biology. Yet, little is known about gut microbiota dynamics during the early stages of ecological diversification and speciation. We sequenced the V4 region of the 16s rRNA gene to study the gut microbiota of Nicaraguan Midas cichlid fish (Amphilophus cf. citrinellus). Specifically, we tested the hypothesis that parallel divergence in trophic ecology in extremely young adaptive radiations from two crater lakes is associated with parallel changes of their gut microbiota. RESULTS: Bacterial communities of fish guts and lake water were highly distinct, indicating that the gut microbiota is shaped by host-specific factors. Among individuals of the same crater lake, differentiation in trophic ecology was weakly associated with gut microbiota differentiation, suggesting that diet, to some extent, affects the gut microbiota. However, differences in trophic ecology were much more pronounced across than within species whereas similar patterns were not observed for taxonomic and functional differences of the gut microbiota. Across the two crater lakes, we could not detect conclusive evidence for parallel changes of the gut microbiota associated with trophic ecology. CONCLUSIONS: A lack of clearly differentiated niches during the early stages of ecological diversification might result in non-parallel changes of gut microbial communities, as observed in our study system as well as in other recently diverged fish species. Video Abstract.


Assuntos
Evolução Biológica , Ciclídeos/classificação , Ciclídeos/microbiologia , Microbioma Gastrointestinal , Simpatria , Animais , Microbioma Gastrointestinal/genética , Especiação Genética , Lagos , Nicarágua , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa