Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(19): 13741-13754, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158399

RESUMO

Molecular dynamics (MD) simulations present a data-mining challenge, given that they can generate a considerable amount of data but often rely on limited or biased human interpretation to examine their information content. By not asking the right questions of MD data we may miss critical information hidden within it. We combine dimensionality reduction (UMAP) and unsupervised hierarchical clustering (HDBSCAN) to quantitatively characterize prevalent coordination environments of chemical species within MD data. By focusing on local coordination, we significantly reduce the amount of data to be analyzed by extracting all distinct molecular formulas within a given coordination sphere. We then efficiently combine UMAP and HDBSCAN with alignment or shape-matching algorithms to partition these formulas into structural isomer families indicating their relative populations. The method was employed to reveal details of cation coordination in electrolytes based on molecular liquids.

2.
Soft Matter ; 16(42): 9789-9798, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33001127

RESUMO

The polymeric structure of hydrogels is commonly presented in the literature as resembling a fishing net. However, this simple view cannot fully capture all the unique properties of these materials. Crucial for a detailed description of the bulk structure in free-radical polymerized vinylic hydrogels is a thorough understanding of the cross-linker distribution. This work focuses on the precise role of the tetra-functional cross-linker in the hydrogel system: acrylamide-N,N'-methylenebis(acrylamide). Clusters of crosslinker smaller than 4 nm and their agglomerates, as well as polymer domains with sizes from the 100 nm to the µm-range, have been identified by means of both X-ray and visible-light scattering. Placed in the context of the extensive literature on this system, these observations demonstrate the heterogeneous organisation of the polymer within the hydrogel network structure, and can be accounted for by the different polymerization behavior of the monomer and crosslinker. Together with polymer-network chain-length approximations based on swelling experiments and structural observations with scanning electron microscopy, these results indicate a hierarchical structure of the polymer network surrounding pockets of water.

3.
Nat Commun ; 15(1): 1397, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360965

RESUMO

Divalent ions (Mg, Ca, and Zn) are being considered as competitive, safe, and earth-abundant alternatives to Li-ion electrochemistry, but present challenges for stable cycling due to undesirable interfacial phenomena. We explore the formation of electroactive species in the electrolyte Ca(BH4)2∣THF using molecular dynamics coupled with a continuum model of bulk and interfacial speciation. Free-energy analysis and unsupervised learning indicate a majority population of neutral Ca dimers and monomers with diverse molecular conformations and an order of magnitude lower concentration of the primary electroactive charged species - the monocation, CaBH[Formula: see text] - produced via disproportionation of neutral complexes. Dense layering of THF molecules within ~1 nm of the electrode surface strongly modulates local electrolyte species populations. A dramatic increase in monocation population in this interfacial zone is induced at negative bias. We see no evidence for electrochemical activity of fully-solvated Ca2+. The consequences for performance are discussed in light of this molecular-scale insight.

4.
Front Chem ; 12: 1381144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736687

RESUMO

The photo-enhanced electrocatalytic method of oxygen evolution reaction (OER) shows promise for enhancing the effectiveness of clear energy generation through water splitting by using renewable and sustainable source of energy. However, despite benefits of photoelectrocatalytic (PEC) water splitting, its uses are constrained by its low efficiency as a result of charge carrier recombination, a large overpotential, and sluggish reaction kinetics. Here, we illustrate that Nickel telluride (NiTe) synthesized by hydrothermal methods can function as an extremely effective photo-coupled electrochemical oxygen evolution reaction (POER) catalyst. In this study, NiTe was synthesized by hydrothermal method at 145°C within just an hour of reaction time. In dark conditions, the NiTe deposited on carbon cloth substrate shows a small oxygen evolution reaction overpotential (261 mV) at a current density of 10 mA cm-2, a reduced Tafel slope (65.4 mV dec-1), and negligible activity decay after 12 h of chronoamperometry. By virtue of its enhanced photo response, excellent light harvesting ability, and increased interfacial kinetics of charge separation, the NiTe electrode under simulated solar illumination displays exceptional photoelectrochemical performance exhibiting overpotential of 165 mV at current density of 10 mA cm-2, which is about 96 mV less than on dark conditions. In addition, Density Functional Theory investigations have been carried out on the NiTe surface, the results of which demonstrated a greater adsorption energy for intermediate -OH on the catalyst site. Since the -OH adsorption on the catalyst site correlates to catalyst activation, it indicates the facile electrocatalytic activity of NiTe owing to favorable catalyst activation. DFT calculations also revealed the facile charge density redistribution following intermediate -OH adsorption on the NiTe surface. This work demonstrates that arrays of NiTe elongated nanostructure are a promising option for both electrochemical and photoelectrocatalytic water oxidation and offers broad suggestions for developing effective PEC devices.

5.
Small Methods ; 7(11): e2300458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37712197

RESUMO

Metal halide perovskites (MHPs) are semiconductors with promising application in optoelectronic devices, particularly, in solar cell technologies. The chemical and electronic properties of MHPs at the surface and interfaces with adjacent layers dictate charge transfer within stacked devices and ultimately the efficiency of the latter. X-ray photoelectron spectroscopy is a powerful tool to characterize these material properties. However, the X-ray radiation itself can potentially affect the MHP and therefore jeopardize the reliability of the obtained information. In this work, the effect of X-ray irradiation is assessed on Cs0.05 MA0.15 FA0.8 Pb(I0.85 Br0.15 )3  (MA for CH3 NH3 , and FA for CH2 (NH2 )2 ) MHP thin-film samples in a half-cell device. There is a comparison of measurements acquired with synchrotron radiation and a conventional laboratory source for different times. Changes in composition and core levels binding energies are observed in both cases, indicating a modification of the chemical and electronic properties. The results suggest that changes observed over minutes with highly brilliant synchrotron radiation are likely occurring over hours when working with a lab-based source providing a lower photon flux. The possible degradation pathways are discussed, supported by steady-state photoluminescence analysis. The work stresses the importance of beam effect assessment at the beginning of XPS experiments of MHP samples.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa