Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Environ Res ; 220: 115189, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587716

RESUMO

Microbial communities in cultivated soils control the fate of pollutants associated with agricultural practice. The present study was designed to explore the response of bacterial communities to the application of the widely-used herbicide atrazine in three different crop fields that differ significantly in their physicochemical structure and nutritional content: the nutrient-rich (with relatively high carbon and nitrogen content) Newe Yaar (NY) and Ha-Ogen (HO) soils and the nutrient-poor, sandy Sde-Eliyahu (SE) soil. The 16 S rRNA gene amplicon sequencing revealed the nutrient poor HO soil differs in its response to atrazine in comparison to the two nutrient-rich soils both in the shortest persistence of atrazine and its effect on community structure and composition. Potential reported bacterial degraders of atrazine such as Pseudomonas, Clostridium and Bacillus were more abundant in contaminated sandy/poor soils (HO) whereas bacteria known for nitrogen cycling such as Azospirillum, Sinorhizobium, Nitrospira and Azohydromonas were significantly more abundant in the nutrient rich contaminated SE soils. No significant increase of potential indigenous degrader Arthrobacter was detected in SE and NY soils whereas a significant increase was recorded with HO soils. An overall shift in bacterial community composition following atrazine application was observed only in the nutrient poor soil. Understanding atrazine persistence and microbiome response to its application of in dependence with soil types serve the design of precision application strategies.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Atrazina/toxicidade , Herbicidas/toxicidade , Herbicidas/química , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Microbiologia do Solo , Biodegradação Ambiental , Bactérias/genética , Nitrogênio , Areia
2.
Environ Sci Technol ; 54(9): 5832-5842, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32289225

RESUMO

Membrane biofouling constitutes a great challenge in anaerobic membrane bioreactor (AnMBR). Here, we studied the initial deposition of anaerobes, the first step in biofilm formation, with a consortium isolated from an AnMBR on membranes with different surface properties and under two shear rate conditions without filtration. We found that the cell transfer coefficient, calculated from the initial deposition experiments, was similar under the two shear rates for the hydrophobic membranes, but much higher under low shear rate and much lower under high shear rate, for the hydrophilic membrane. The cell transfer coefficient measured under filtration mode and at a higher shear rate showed a similar trend. The pioneer bacteria and archaea (without filtration) were identified by next-generation sequencing. The results showed that the selective force for the dissimilarity of the pioneer bacterial and archaeal diversity was the shear rate and the membrane surface properties, respectively. However, statistical analyses revealed minor changes in the pioneer bacteria (class level) and archaea (order level) populations under the various conditions. These results shed light on the first step of biofilm formation on the membranes in AnMBRs and emphasize the importance of hydrodynamic shear and membrane surface properties on the initially deposited anaerobes.


Assuntos
Incrustação Biológica , Reatores Biológicos , Anaerobiose , Bactérias Anaeróbias , Membranas , Membranas Artificiais , Eliminação de Resíduos Líquidos
3.
Biodegradation ; 30(1): 37-46, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30350250

RESUMO

Anthropogenic activities have introduced elevated levels of brominated phenols to the environment. These compounds are associated with toxic and endocrine effects, and their environmental fate is of interest. An aerobic strain Ochrobactrum sp. HI1 was isolated from soils in the vicinity of a bromophenol production plant and tested for its ability to degrade 4-bromophenol (4-BP). A ring hydroxylation pathway of degradation was proposed, using the evidence from degradation intermediates analysis and multi-element (C, Br, H) compound-specific isotope analysis. Benzenetriol and 4-bromocatechol were detected during degradation of 4-bromophenol. Degradation resulted in a normal carbon isotope effect (εC = -1.11 ± 0.09‰), and in insignificant bromine and hydrogen isotope fractionation. The dual C-Br isotope trend for ring hydroxylation obtained in the present study differs from the trends expected for reductive debromination or photolysis. Thus, the isotope data reported herein can be applied in future field studies to delineate aerobic biodegradation processes and differentiate them from other natural attenuation processes.


Assuntos
Clima Desértico , Ochrobactrum/metabolismo , Fenóis/metabolismo , Microbiologia do Solo , Aerobiose , Biodegradação Ambiental , Isótopos de Carbono/química , Fracionamento Químico , Fenóis/química , Filogenia , RNA Ribossômico 16S/genética
4.
Biotechnol Bioeng ; 113(9): 1881-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26913813

RESUMO

We investigated effective simultaneous removal of high loads of nitrate and perchlorate from synthetic groundwater using an ion exchange membrane bioreactor (IEMB). The aim of this research was to characterize both transport aspects and biodegradation mechanisms involved in the treatment process of high loads of the two anions. Biodegradation process was proven to be efficient with over 99% efficiency of both perchlorate and nitrate, regardless of their load. The maximum biodegradation rates were 18.3 (mmol m(-2) h(-1) ) and 5.5 (mmol m(-2) h(-1) ) for nitrate and perchlorate, respectively. The presence of a biofilm on the bio-side of the membrane only slightly increased the nitrate and perchlorate transmembrane flux as compared to the measured flux during a Donnan dialysis experiment where there is no biodegradation of perchlorate and nitrate in the bio-compartment. The nitrate flux in presence of a biofilm was 18.3 (±1.9) (mmole m(-2) h(-1) ), while without the biofilm, the flux was 16.9 (±1.5) (mmole m(-2) h(-1) ) for the same feed inlet nitrate concentration of 4 mM. The perchlorate transmembrane flux increased similarly by an average of 5%. Samples of membrane biofilm and suspended bacteria from the bio-reactor were analyzed for diversity and abundance of the perchlorate and nitrate reducing bacteria. Klebsiella oxytoca, known as a glycerol fermenter, accounted for 70% of the suspended bacteria. In contrast, perchlorate and nitrate reducing bacteria predominated in the biofilm present on the membrane. These results are consistent with our proposed two stage biodegradation mechanism where glycerol is first fermented in the suspended phase of the bio-reactor and the fermentation products drive perchlorate and nitrate bio-reduction in the biofilm attached to the membrane. These results suggest that the niche exclusion of microbial populations in between the reactor and membrane is controlled by the fluxes of the electron donors and acceptors. Such a mechanism has important implications for controlling the bio-reduction reaction in the IEMB when using glycerol as a carbon source and allowing treating a complex contamination of high concentrations of perchlorate and nitrating in groundwater and successfully biodegrading them to non-hazardous components. Biotechnol. Bioeng. 2016;113: 1881-1891. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Nitratos/metabolismo , Percloratos/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Desenho de Equipamento , Glicerol , Troca Iônica , Nitratos/análise , Percloratos/análise , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 50(2): 616-24, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26689904

RESUMO

Microbial-induced CaCO3 precipitation (MICP) via urea-hydrolysis (ureolysis) is an emerging soil improvement technique for various civil engineering and environmental applications. In-situ application of MICP in soils is performed either by augmenting the site with ureolytic bacteria or by stimulating indigenous ureolytic bacteria. Both of these approaches may lead to changes in the indigenous bacterial population composition and to the accumulation of large quantities of ammonium. In this batch study, effective ureolysis was stimulated in coastal sand from a semiarid environment, with low initial ureolytic bacteria abundance. Two different carbon sources were used: yeast-extract and molasses. No ureolysis was observed in their absence. Ureolysis was achieved using both carbon sources, with a higher rate in the yeast-extract enrichment resulting from increased bacterial growth. The changes to the indigenous bacterial population following biostimulation of ureolysis were significant: Bacilli class abundancy increased from 5% in the native sand up to 99% in the yeast-extract treatment. The sand was also enriched with ammonium-chloride, where ammonia-oxidation was observed after 27 days, but was not reflected in the bacterial population composition. These results suggest that biostimulation of ureolytic bacteria can be applied even in a semiarid and nutrient-poor environment using a simple carbon source, that is, molasses. The significant changes to bacterial population composition following ureolysis stimulation could result in a decrease in trophic activity and diversity in the treated site, thus they require further attention.


Assuntos
Bactérias/metabolismo , Microbiologia do Solo , Ureia/metabolismo , Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Clima Desértico , Hidrólise , Israel , Melaço , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Dióxido de Silício , Leveduras/química
6.
J Basic Microbiol ; 56(8): 900-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27037935

RESUMO

Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were < 1 independent of niche or water content. In contrast, the bacterial amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Oxirredutases/metabolismo , Microbiologia do Solo , Archaea/genética , Bactérias/genética , DNA Arqueal/genética , DNA Bacteriano/genética , Clima Desértico , Ecossistema , Nitrificação , Oxirredução , Oxirredutases/genética , Solo/química , Água
7.
Environ Sci Technol ; 49(7): 4433-40, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25723316

RESUMO

Many of polybrominated organic compounds, used as flame retardant additives, belong to the group of persistent organic pollutants. Compound-specific isotope analysis is one of the potential analytical tools for investigating their fate in the environment. However, the isotope effects associated with transformations of brominated organic compounds are still poorly explored. In the present study, we investigated carbon and bromine isotope fractionation during degradation of tribromoneopentyl alcohol (TBNPA), one of the widely used flame retardant additives, in three different chemical processes: transformation in aqueous alkaline solution (pH 8); reductive dehalogenation by zero-valent iron nanoparticles (nZVI) in anoxic conditions; oxidative degradation by H2O2 in the presence of CuO nanoparticles (nCuO). Two-dimensional carbon-bromine isotope plots (δ(13)C/Δ(81)Br) for each reaction gave different process-dependent isotope slopes (Λ(C/Br)): 25.2 ± 2.5 for alkaline hydrolysis (pH 8); 3.8 ± 0.5 for debromination in the presence of nZVI in anoxic conditions; ∞ in the case of catalytic oxidation by H2O2 with nCuO. The obtained isotope effects for both elements were generally in agreement with the values expected for the suggested reaction mechanisms. The results of the present study support further applications of dual carbon-bromine isotope analysis as a tool for identification of reaction pathway during transformations of brominated organic compounds in the environment.


Assuntos
Fracionamento Químico/métodos , Propanóis/química , Bromo/química , Isótopos de Carbono/química , Catálise , Cobre/química , Retardadores de Chama/análise , Halogenação , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Hidrólise , Ferro/química , Isótopos/análise , Nanopartículas/química , Oxirredução , Propanóis/análise
8.
Antibiotics (Basel) ; 13(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666991

RESUMO

Microorganisms carrying antimicrobial resistance genes are often found in greywater. As the reuse of greywater becomes increasingly needed, it is imperative to determine how greywater treatment impacts antimicrobial resistance genes (ARGs). Using qPCR and SmartChip™ qPCR, we characterized ARG patterns in greywater microbial communities before, during, and after treatment by a recirculating vertical flow constructed wetland. In parallel, we examined the impact of greywater-treated irrigation on soil, including the occurrence of emerging micropollutants and the taxonomic and ARG compositions of microbial communities. Most ARGs in raw greywater are removed efficiently during the winter season, while some ARGs in the effluents increase in summer. SmartChip™ qPCR revealed the presence of ARGs, such as tetracycline and beta-lactam resistance genes, in both raw and treated greywater, but most abundantly in the filter bed. It also showed that aminoglycoside and vancomycin gene abundances significantly increased after treatment. In the irrigated soil, the type of water (potable or treated greywater) had no specific impact on the total bacterial abundance (16S rRNA gene). No overlapping ARGs were found between treated greywater and greywater-irrigated soil. This study indicates ARG abundance and richness increased after treatment, possibly due to the concentration effects of the filter beds.

9.
Environ Sci Technol ; 47(1): 479-84, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215036

RESUMO

The explosive Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is known to be degraded aerobically by various isolates of the Rhodococcus species, with denitration being the key step, mediated by Cytochrome P450. Our study aimed at gaining insight into the RDX degradation mechanism by Rhodococcus species and comparing isotope effects associated with RDX degradation by distinct Rhodococcus strains. For these purposes, enrichment in (13)C and (15)N isotopes throughout RDX denitration was studied for three distinct Rhodococcus strains, isolated from soil and groundwater in an RDX-contaminated site. The observable (15)N enrichment throughout the reaction, together with minor (13)C enrichment, suggests that N-N bond cleavage is likely to be the key rate-limiting step in the reaction. The similarity in the kinetic (15)N isotope effect between the three tested strains suggests that either isotope-masking effects are negligible, or are of a similar extent for all tested strains. The lack of variability in the kinetic (15)N isotope effect allows the interpretation of environmental studies with greater confidence.


Assuntos
Substâncias Explosivas/metabolismo , Rhodococcus/metabolismo , Poluentes do Solo/metabolismo , Triazinas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Isótopos de Carbono , Cinética , Isótopos de Nitrogênio
10.
Anal Bioanal Chem ; 405(9): 2923-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23052885

RESUMO

The increasing use of kinetic isotope effects for environmental studies has motivated the development of new compound-specific isotope analysis techniques for emerging pollutants. Recently, high-precision bromine isotope analysis in individual brominated organic compounds was proposed, by the coupling of gas chromatography to a multi-collector inductively coupled plasma mass spectrometer using strontium as an external spike for instrumental bias correction. The present study, for the first time, demonstrates an application of this technique for determining bromine kinetic isotope effects during biological reaction, focusing on the reductive debromination of brominated phenols under anaerobic conditions. Results show bromine isotope enrichment factors (ε) of -0.76 ± 0.08, -0.46 ± 0.19, and -0.20 ± 0.06 ‰ for the debromination of 4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol, respectively. These values are rather low, yet still high enough to be obtained with satisfying certainty. This further implies that the analytical method may be also appropriate for future environmental applications.


Assuntos
Bromo/análise , Fenóis/análise , Biotransformação , Bromo/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Halogenação , Isótopos/análise , Isótopos/metabolismo , Cinética , Fenóis/metabolismo
11.
Sci Total Environ ; 890: 164136, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37225100

RESUMO

Greywater often contains microorganisms carrying antimicrobial resistance genes (ARGs). Reuse of greywater thus potentially facilitates the enrichment and spread of multidrug resistance, posing a possible hazard for communities that use it. As water reuse becomes increasingly necessary, it is imperative to determine how greywater treatment impacts ARGs. In this study, we characterize ARG patterns in greywater microbial communities before and after treatment by a recirculating vertical flow constructed wetland (RVFCW). This greywater recycling method has been adopted by some small communities and households for greywater treatment; however, its ability to remove ARGs is unknown. We examined the taxonomic and ARG compositions of microbial communities in raw and treated greywater from five households using shotgun metagenomic sequencing. Total ARGs decreased in abundance and diversity in greywater treated by the RVFCW. In parallel, the microbial communities decreased in similarity in treated greywater. Potentially pathogenic bacteria associated with antimicrobial resistance and mobile genetic elements were detected in both raw and treated water, with a decreasing trend after treatment. This study indicates that RVFCW systems have the potential to mitigate antimicrobial resistance-related hazards when reusing treated greywater, but further measures need to be taken regarding persistent mobile ARGs and potential pathogens.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias/genética , Metagenoma , Água , Genes Bacterianos
12.
Environ Sci Pollut Res Int ; 30(57): 120749-120762, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943434

RESUMO

Diaphorobacter strain DS2 degrades 3-nitrotoluene and 2-nitrotoluene via ring oxidation with 3-nitrotoluene dioxygenase (3NTDO). In the current study, we hypothesized that 3NTDO might also be involved in the degradation of 2,4,6-trinitrotoluene (TNT), a major nitroaromatic explosive contaminant in soil and groundwater. Strain DS2 transforms TNT as a sole carbon and nitrogen source when grown on it. Ammonium chloride and succinate in the medium accelerated the TNT degradation rate. A resting cell experiment suggested that TNT does not compete with 3NT degradation (no negative impact of TNT on the reaction velocity for 3NT). Enzyme assay with 3NTDO did not exhibit TNT transformation activity. The above results confirmed that 3NTDO of DS2 is not responsible for TNT degradation. In the resting cell experiment, within 10 h, 4ADNT completely degraded. The degradation of 2ADNT was 97% at the same time. We hypothesized that 3NTDO involve in this reaction. Based on the DS2 genome, we proposed that the N-ethylmaleimide reductases (nemA) were involved in the initial reduction of the nitro group and aromatic ring of TNT. Our findings suggest that strain DS2 could be helpful for the removal of TNT from contaminated sites with or without any additional carbon and nitrogen source and with minimal accumulation of undesirable intermediates.


Assuntos
Trinitrotolueno , Trinitrotolueno/metabolismo , Biotransformação , Carbono , Nitrogênio/metabolismo , Biodegradação Ambiental
13.
Chemosphere ; 311(Pt 1): 137085, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328316

RESUMO

TNT, or 2,4,6-trinitrotoluene, is a common explosive that can contaminate soil and groundwater in production sites, military training areas, and disposal locations. The compound is highly toxic; therefore, there is an urgent need to rehabilitate the impacted environments. Harnessing the microbial ability to biodegrade TNT into environmentally harmless compound(s) is one approach to remediating contaminated sites. In our study, we report on the genomic and metabolic ability of Stenotrophomonas strain SG1 to degrade TNT under aerobic and anaerobic conditions. The bacterial strain SG1 was first isolated as a contaminant from a culture of Diaphorobacter sp. strain DS2 over minimal media supplemented with TNT. The draft genome assembly of strain SG1 is ∼4.7 Mb and is distributed among 358 contigs. The homology search against the custom database of enzymes responsible for TNT biodegradation revealed the presence of three N-ethylmaleimide reductases (NemA) with a defined KEGG ortholog and KEGG pathway of TNT degradation. The presence of respiratory nitrate reductases has also been mapped, which supports denitrification under anaerobic conditions. Experimentally, the TNT transformation rate accelerated when carbon sources, such as sodium acetate, sodium citrate, sodium succinate, sucrose, and glucose (final concentration of 5 mM), were added. Citrate promoted the highest growth and TNT transformation ratio (88.35%) in 120 h. With the addition of 5 mM ammonium chloride, TNT completely disappeared in the citrate and sucrose-containing treatments in 120 h. However, higher biomass was obtained in the sucrose and glucose-containing treatments in 120 h. During incubation, the formation of amino dinitrotoluene isomers, dinitrotoluene isomers, trinitrobenzene, azoxy isomers, diaryl hydroxylamines, and corresponding secondary amines was confirmed by GC/MS and UPLC/MS. 2-Amino-4-nitrotoluene, 4-amino-2-nitrotoluene, and 2-amino-6-nitrotoluene were also identified in the culture supernatant by GC/MS. Under anaerobic conditions, TNT completely disappeared in the citrate and citrate plus nitrate treatments. Since the strain shows the ability to remove TNT, this research should be useful in basic research and practical applications for removing TNT from wastewater.


Assuntos
Trinitrotolueno , Anaerobiose , Stenotrophomonas , Biodegradação Ambiental , Citratos , Sacarose , Glucose
14.
Membranes (Basel) ; 13(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999342

RESUMO

In the last twenty-five years, extensive work has been done on ion exchange membrane bioreactors (IEMB) combining Donnan dialysis and anaerobic reduction to remove trace oxyanions (e.g., perchlorate, nitrate, chlorate, arsenate) from contaminated water sources. Most studies used Donnan dialysis contactors with high recirculation rates on the feed side, so under continuous operation, the effective concentration on the feed side of the membrane is the same as the exit concentration (CSTR mode). We have built, characterized, and modelled a plug flow Donnan dialysis contactor (PFR) that maximizes concentration on the feed side and operated it on feed solutions spiked with perchlorate and nitrate ion using ACS and PCA-100 anion exchange membranes. At identical feed inlet concentrations with the ACS membrane, membrane area loading rates are three-fold greater, and fluxes are more than double in the PFR contactor than in the CSTR contactor. A model based on the nonlinear adsorption of perchlorate in ACS membrane correctly predicted the trace ion concentration as a function of space-time in experiments with ACS. For PCA membrane, a linear flux dependence on feed concentration correctly described trace ion feed concentration as a function of space-time. Anion permeability for PCA-100 was high enough that the overall mass transfer was affected by the film boundary layer resistance. These results provide a basis for efficiently scaling up Donnan dialysis contactors and incorporating them in full-scale IEMB setups.

15.
Microorganisms ; 10(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35336238

RESUMO

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) pollution is accompanied by other co-contaminants, such as perchlorate and chlorates, which can retard biodegradation. The effects of perchlorate and chlorate on aerobic RDX degradation remain unclear. We hypothesized that they have a negative or no impact on aerobic RDX-degrading bacteria. We used three aerobic RDX-degrading strains-Rhodococcus strains YH1 and T7 and Gordonia YY1-to examine this hypothesis. The strains were exposed to perchlorate, chlorate, and nitrate as single components or in a mixture. Their growth, degradation activity, and gene expression were monitored. Strain-specific responses to the co-contaminants were observed: enhanced growth of strain YH1 and inhibition of strain T7. Vmax and Km of cytochrome P450 (XplA) in the presence of the co-contaminants were not significantly different from the control, suggesting no direct influence on cytochrome P450. Surprisingly, xplA expression increased fourfold in cultures pre-grown on RDX and, after washing, transferred to a medium containing only perchlorate. This culture did not grow, but xplA was translated and active, albeit at lower levels than in the control. We explained this observation as being due to nitrogen limitation in the culture and not due to perchlorate induction. Our results suggest that the aerobic strain YH1 is effective for aerobic remediation of RDX in groundwater.

16.
Environ Pollut ; 311: 120018, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002099

RESUMO

2,4,6-trinitrotoluene (TNT) is a highly toxic explosive that contaminates soil and water and may interfere with the degradation of co-occurring compounds, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). We proposed that TNT may influence RDX-degrading bacteria via either general toxicity or a specific effect on the |RDX degradation mechanisms. Thus, we examined the impact of TNT on RDX degradation by Rhodococcus strains YH1, T7, and YY1, which were isolated from an explosives-polluted environment. Although partly degraded, TNT did not support the growth of any of the strains when used as either sole carbon or sole nitrogen sources, or as carbon and nitrogen sources. The incubation of a mixture of TNT (25 mg/l) and RDX (20 mg/l) completely inhibited RDX degradation. The effect of TNT on the cytochrome P450, catalyzing RDX degradation, was tested in a resting cell experiment, proving that TNT inhibits XplA protein activity. A dose-response experiment showed that the IC50/trans values for YH1, T7, and YY1 were 7.272, 5.098, and 9.140 (mg/l of TNT), respectively, illustrating variable sensitivity to TNT among the strains. The expression of xplA was also strongly suppressed by TNT. Cells that were pre-grown with RDX (allowing xplA expression) and incubated with ammonium chloride, glucose, and TNT, completely transformed into their amino dinitrotoluene isomers and formed azoxy toluene isomers. The presence of oxygen-insensitive nitroreductase that enable reduction of the nitro group in the presence of O2 in the genomes of these strains suggests that they are responsible for TNT transformation in the cultures. The experimental results concluded that TNT has an adverse effect on RDX degradation by the examined strains. It inhibits RDX degradation due to the direct impact on cytochrome P450, xplA, or its expression. The tested strains can transform TNT independently of RDX. Thus, degradation of both compounds is possible if TNT concentrations are below their IC50 values.


Assuntos
Substâncias Explosivas , Rhodococcus , Poluentes do Solo , Trinitrotolueno , Biodegradação Ambiental , Carbono/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Substâncias Explosivas/toxicidade , Nitrogênio/metabolismo , Rhodococcus/metabolismo , Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Triazinas/metabolismo , Triazinas/toxicidade , Trinitrotolueno/toxicidade , Água/metabolismo
17.
Microorganisms ; 10(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36013998

RESUMO

Antiscalants are organic polymers widely used for scale inhibition in seawater desalination. While they are susceptible to biodegradation, they provide nutrients for bacterial cell growth and energy for the microbes that assimilate and degrade them. This paper shows the biodegradability of three commercial antiscalants (polyacrylate-CA, polyphosphonate-PP, and carboxylated dendrimers-DN) applied in seawater reverse osmosis desalination (SWRO) as well as analyzing the antiscalant's effects on microbial diversity using microbial cultures grown in seawater, under semi-continuous batch conditions. Nutritional uptake and contribution of the antiscalants to microbial growth were investigated by measuring DOC, TDN, NO3-, NO2-, PO4-, NH4+, and TP of the filtered samples of the incubated batch, twice a month, for twelve months. The microbial community was estimated by 16S rRNA sequencing. The main changes in the microbial communities were determined by the incubation period. However, bacterial orders of the antiscalant treatments differed significantly from the control treatment, namely Planctomycetales, Clostridiales, Sphingobacteriales, Rhodobacterales, and Flavobacteriales, and other unclassified bacterial orders, which were found in various relative abundances dependent on incubation times. The results showed the PP antiscalant to be the least biodegradable and to have the least effect on the bacterial community composition compared to the control. This result emphasizes the need to reassess the suitability criteria of antiscalants, and to further monitor their long-term environmental effects.

18.
mSystems ; 7(4): e0016922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35913191

RESUMO

Extensive use of agrochemicals is emerging as a serious environmental issue coming at the cost of the pollution of soil and water resources. Bioremediation techniques such as biostimulation are promising strategies used to remove pollutants from agricultural soils by supporting the indigenous microbial degraders. Though considered cost-effective and eco-friendly, the success rate of these strategies typically varies, and consequently, they are rarely integrated into commercial agricultural practices. In the current study, we applied metabolic-based community-modeling approaches for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Efficacy of biostimulants as enhancers of the indigenous degrader Paenarthrobacter was ranked through simulation and validated in pot experiments. A two-dimensional simulation matrix predicting the effect of different biostimulants on additional potential indigenous degraders (Pseudomonas, Clostridium, and Geobacter) was crossed with experimental observations. The overall ability of the models to predict the compounds that act as taxa-selective stimulants indicates that computational algorithms can guide the manipulation of the soil microbiome in situ and provides an additional step toward the educated design of biostimulation strategies. IMPORTANCE Providing the food requirements of a growing population comes at the cost of intensive use of agrochemicals, including pesticides. Native microbial soil communities are considered key players in the degradation of such exogenous substances. Manipulating microbial activity toward an optimized outcome in efficient biodegradation processes conveys a promise of maintaining intensive yet sustainable agriculture. Efficient strategies for harnessing the native microbiome require the development of approaches for processing big genomic data. Here, we pursued metabolic modeling for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Our genomic-based predictions point at strategies for optimizing biodegradation by the native community. Developing a systematic, data-guided understanding of metabolite-driven targeted enhancement of selected microorganisms lays the foundation for the design of ecologically sound methods for optimizing microbiome functioning.


Assuntos
Poluentes Ambientais , Praguicidas , Biodegradação Ambiental , Solo/química , Praguicidas/metabolismo , Agricultura , Poluentes Ambientais/metabolismo , Bactérias/metabolismo
19.
Microorganisms ; 10(11)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422337

RESUMO

A crude oil spill in 2014 resulted in extensive soil contamination of the hyper arid Evrona Nature Reserve in Israel's Negev Desert. The contaminated soils became highly hydrophobic, threatening the existence of plants in the habitat. We hypothesized that bioaugmenting the soil with indigenous biosurfactant-producing, hydrocarbon-degrading bacteria (HDB) would accelerate the reduction in the soil's hydrophobicity. We aimed to isolate and characterize biosurfactant-producing HDBs from the desert-contaminated soil and test if they can be used for augmenting the soil. Twelve hydrocarbon-degrading strains were isolated, identified as Pseudomonas, and classified as biosurfactants "producing" and "nonproducing". Inoculating 109 CFU/g of "producing" strains into the polluted soil resulted in a 99.2% reduction in soil hydrophobicity within seven days. At the same time, nonproducing strains reduced hydrophobicity by only 17%, while no change was observed in the untreated control. The microbial community in the inoculated soil was dominated by the introduced strains over 28 days, pointing to their persistence. Rhamnolipid biosynthesis gene rhlAB remained persistent in soil inoculated with biosurfactants, indicating in situ production. We propose that the success of the treatment is due to the use of inoculum enriched from the polluted soil.

20.
Biodegradation ; 22(5): 997-1005, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21327803

RESUMO

Groundwater contamination by the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a global problem. Israel's coastal aquifer was contaminated with RDX. This aquifer is mostly aerobic and we therefore sought aerobic bacteria that might be involved in natural attenuation of the compound in the aquifer. RDX-degrading bacteria were captured by passively sampling the indigenous bacteria onto sterile sediments placed within sampling boreholes. Aerobic RDX biodegradation potential was detected in the sediments sampled from different locations along the plume. RDX degradation with the native sampled consortium was accompanied by 4-nitro-2,4-diazabutanal formation. Two bacterial strains of the genus Rhodococcus were isolated from the sediments and identified as aerobic RDX degraders. The xplA gene encoding the cytochrome P450 enzyme was partially (~500 bp) sequenced from both isolates. The obtained DNA sequences had 99% identity with corresponding gene fragments of previously isolated RDX-degrading Rhodococcus strains. RDX degradation by both strains was prevented by 200 µM of the cytochrome P450 inhibitor metyrapone, suggesting that cytochrome P450 indeed mediates the initial step in RDX degradation. RDX biodegradation activity by the T7 isolate was inhibited in the presence of nitrate or ammonium concentrations above 1.6 and 5.5 mM, respectively (100 mg l(-1)) while the T9N isolate's activity was retarded only by ammonium concentrations above 5.5 mM. This study shows that bacteria from the genus Rhodococcus, potentially degrade RDX in the saturated zone as well, following the same aerobic degradation pathway defined for other Rhodococcus species. RDX-degrading activity by the Rhodococcus species isolate T9N may have important implications for the bioremediation of nitrate-rich RDX-contaminated aquifers.


Assuntos
Água Doce/microbiologia , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo , Triazinas/metabolismo , Poluentes Químicos da Água/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Substâncias Explosivas/metabolismo , Dados de Sequência Molecular , Filogenia , Rhodococcus/classificação , Rhodococcus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa