RESUMO
For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.
Assuntos
Carcinogênese , Colo , Jejum , Comportamento Alimentar , Intestino Delgado , Poliaminas , Células-Tronco , Animais , Feminino , Masculino , Camundongos , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células , Colo/citologia , Colo/metabolismo , Colo/patologia , Dieta , Jejum/fisiologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Neoplasias/patologia , Poliaminas/metabolismo , Biossíntese de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/fisiologia , Medição de Risco , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Fatores de Tempo , Comportamento Alimentar/fisiologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismoRESUMO
A decline in stem cell function impairs tissue regeneration during ageing, but the role of the stem-cell-supporting niche in ageing is not well understood. The small intestine is maintained by actively cycling intestinal stem cells that are regulated by the Paneth cell niche1,2. Here we show that the regenerative potential of human and mouse intestinal epithelium diminishes with age owing to defects in both stem cells and their niche. The functional decline was caused by a decrease in stemness-maintaining Wnt signalling due to production of Notum, an extracellular Wnt inhibitor, in aged Paneth cells. Mechanistically, high activity of mammalian target of rapamycin complex 1 (mTORC1) in aged Paneth cells inhibits activity of peroxisome proliferator activated receptor α (PPAR-α)3, and lowered PPAR-α activity increased Notum expression. Genetic targeting of Notum or Wnt supplementation restored function of aged intestinal organoids. Moreover, pharmacological inhibition of Notum in mice enhanced the regenerative capacity of aged stem cells and promoted recovery from chemotherapy-induced damage. Our results reveal a role of the stem cell niche in ageing and demonstrate that targeting of Notum can promote regeneration of aged tissues.
Assuntos
Envelhecimento , Senescência Celular , Esterases/metabolismo , Mucosa Intestinal/patologia , Celulas de Paneth/metabolismo , Regeneração , Envelhecimento/fisiologia , Animais , Senescência Celular/fisiologia , Esterases/antagonistas & inibidores , Esterases/biossíntese , Feminino , Humanos , Mucosa Intestinal/fisiologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , PPAR alfa/metabolismo , Celulas de Paneth/patologia , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células-Tronco , Células-Tronco/patologia , Proteínas Wnt/antagonistas & inibidores , Via de Sinalização WntRESUMO
Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.
Assuntos
Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias/genética , Mutações Sintéticas Letais/genética , Helicase da Síndrome de Werner/genética , Apoptose/genética , Sistemas CRISPR-Cas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Humanos , Modelos Genéticos , Neoplasias/patologia , Interferência de RNA , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner/deficiênciaRESUMO
Survival differences exist in colorectal cancer (CRC) patients by sex and disease stage. However, the potential molecular mechanism(s) are not well understood. Here we show that asparagine synthetase (ASNS) and G protein-coupled estrogen receptor-1 (GPER1) are critical sensors of nutrient depletion and linked to poorer outcomes for females with CRC. Using a 3D spheroid model of isogenic SW48 KRAS wild-type (WT) and G12A mutant (MT) cells grown under a restricted nutrient supply, we found that glutamine depletion inhibited cell growth in both cell lines, whereas ASNS and GPER1 expression were upregulated in KRAS MT versus WT. Estradiol decreased growth in KRAS WT but had no effect on MT cells. Selective GPER1 and ASNS inhibitors suppressed cell proliferation with increased caspase-3 activity of MT cells under glutamine depletion condition particularly in the presence of estradiol. In a clinical colon cancer cohort from The Cancer Genome Atlas, both high GPER1 and ASNS expression were associated with poorer overall survival for females only in advanced stage tumors. These results suggest KRAS MT cells have mechanisms in place that respond to decreased nutrient supply, typically observed in advanced tumors, by increasing the expression of ASNS and GPER1 to drive cell growth. Furthermore, KRAS MT cells are resistant to the protective effects of estradiol under nutrient deplete conditions. The findings indicate that GPER1 and ASNS expression, along with the interaction between nutrient supply and KRAS mutations shed additional light on the mechanisms underlying sex differences in metabolism and growth in CRC, and have clinical implications in the precision management of KRAS mutant CRC.
RESUMO
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.
Assuntos
Colo/metabolismo , Proteína Forkhead Box M1/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Feminino , Proteína Forkhead Box M1/genética , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Hidrocarboneto Arílico/metabolismoRESUMO
Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/ß-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.
Assuntos
Intestinos , Humanos , Suínos , Animais , Camundongos , Hibridização in Situ Fluorescente , Células-Tronco , Íleo , Colo , Proteínas de Fluorescência Verde/genética , Receptores Acoplados a Proteínas G/genéticaRESUMO
In Fig. 4e of this Article, the labels for 'Control' and 'HFD' were reversed ('Control' should have been labelled blue rather than purple, and 'HFD' should have been labelled purple rather than blue). Similarly, in Fig. 4f of this Article, the labels for 'V' and 'GW' were reversed ('V' should have been labelled blue rather than purple, and 'GW' should have been labelled purple instead of blue). The original figure has been corrected online.
RESUMO
The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.
Assuntos
Microbioma Gastrointestinal , Ácido Succínico , Animais , Ciclo do Ácido Cítrico/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos , Camundongos , Succinatos/metabolismo , Ácido Succínico/metabolismoRESUMO
Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we show that high-fat diet (HFD)-induced obesity augments the numbers and function of Lgr5(+) intestinal stem cells of the mammalian intestine. Mechanistically, a HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-δ) signature in intestinal stem cells and progenitor cells (non-intestinal stem cells), and pharmacological activation of PPAR-δ recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-δ-dependent manner. Notably, HFD- and agonist-activated PPAR-δ signalling endow organoid-initiating capacity to progenitors, and enforced PPAR-δ signalling permits these progenitors to form in vivo tumours after loss of the tumour suppressor Apc. These findings highlight how diet-modulated PPAR-δ activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumours.
Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias do Colo/patologia , Dieta Hiperlipídica/efeitos adversos , Intestinos/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Animais , Contagem de Células , Autorrenovação Celular/efeitos dos fármacos , Feminino , Genes APC , Humanos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , PPAR delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , beta Catenina/metabolismoRESUMO
Most normal and tumor cells are protected from tumor necrosis factor α (TNFα)-induced apoptosis. Here, we identify the MAP3 kinase tumor progression locus-2 (TPL2) as a player contributing to the protection of a subset of tumor cell lines. The combination of TPL2 knockdown and TNFα gives rise to a synthetic lethality phenotype via receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-dependent and -independent mechanisms. Whereas wild-type TPL2 rescues the phenotype, its kinase-dead mutant does not. Comparison of the molecular events initiated by small interfering RNA for TPL2 (siTPL2) ± TNFα in treatment-sensitive and -resistant lines revealed that the activation of caspase-8, downstream of miR-21-5p and cFLIP, is the dominant TPL2-dependent event. More important, comparison of the gene expression profiles of all of the tested cell lines results in the clustering of sensitive and resistant lines into distinct groups, providing proof of principle for the feasibility of generating a predictive tool for treatment sensitivity.
Assuntos
Carcinoma/genética , Inibidores de Caspase/farmacologia , MAP Quinase Quinase Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fator de Necrose Tumoral alfa/genética , Apoptose/genética , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Caspase 8/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Macrófagos/metabolismo , MicroRNAs/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Mutações Sintéticas Letais/genéticaRESUMO
BACKGROUND: Obesity increases the colorectal cancer risk, in part by elevating colonic proinflammatory cytokines. Curcumin (CUR) and supplemental vitamin B-6 each suppress colonic inflammation. OBJECTIVES: We examined whether the combination of CUR and vitamin B-6 amplifies each supplement's effects and thereby suppress obesity-promoted tumorigenesis. METHODS: Male Friend Virus B (FVB) mice (4-week-old; n = 110) received 6 weekly injections of azoxymethane beginning 1 week after arrival. Thereafter, they were randomized to receive a low-fat diet (10% energy from fat), a high-fat diet (HFD; 60% energy from fat), a HFD containing 0.2% CUR, a HFD containing supplemental vitamin B-6 (24 mg pyridoxine HCl/kg), or a HFD containing both CUR and supplemental vitamin B-6 (C + B) for 15 weeks. Colonic inflammation, assessed by fecal calprotectin, and tumor metrics were the primary endpoints. The anti-inflammatory efficacy of the combination was also determined in human colonic organoids. RESULTS: HFD-induced obesity produced a 2.6-fold increase in plasma IL-6 (P < 0.02), a 1.9-fold increase in fecal calprotectin (P < 0.05), and a 2.2-fold increase in tumor multiplicity (P < 0.05). Compared to the HFD group, the C + B combination, but not the individual agents, decreased fecal calprotectin (66%; P < 0.01) and reduced tumor multiplicity and the total tumor burden by 60%-80% (P < 0.03) in an additive fashion. The combination of C + B also significantly downregulated colonic phosphatidylinositol-4,5-bisphosphate 3-kinase, Wnt, and NF-κB signaling by 31%-47% (P < 0.05), effects largely absent with the single agents. Observations that may explain how the 2 agents work additively include a 2.8-fold increased colonic concentration of 3-hydroxyanthranillic acid (P < 0.05) and a 1.3-fold higher colonic concentration of the active coenzymatic form of vitamin B-6 (P < 0.05). In human colonic organoids, micromolar concentrations of CUR, vitamin B-6, and their combination suppressed secreted proinflammatory cytokines by 41%-93% (P < 0.03), demonstrating relevance to humans. CONCLUSIONS: In this mouse model, C + B is superior to either agent alone in preventing obesity-promoted colorectal carcinogenesis. Augmented suppression of procancerous signaling pathways may be the means by which this augmentation occurs.
Assuntos
Neoplasias Colorretais , Curcumina , Animais , Masculino , Camundongos , Carcinogênese , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/prevenção & controle , Curcumina/farmacologia , Dieta Hiperlipídica , Suplementos Nutricionais , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Piridoxina , Vitamina B 6/farmacologia , VitaminasRESUMO
OBJECTIVE: Serrated colorectal cancer (CRC) accounts for approximately 25% of cases and includes tumours that are among the most treatment resistant and with worst outcomes. This CRC subtype is associated with activating mutations in the mitogen-activated kinase pathway gene, BRAF, and epigenetic modifications termed the CpG Island Methylator Phenotype, leading to epigenetic silencing of key tumour suppressor genes. It is still not clear which (epi-)genetic changes are most important in neoplastic progression and we begin to address this knowledge gap herein. DESIGN: We use organoid culture combined with CRISPR/Cas9 genome engineering to sequentially introduce genetic alterations associated with serrated CRC and which regulate the stem cell niche, senescence and DNA mismatch repair. RESULTS: Targeted biallelic gene alterations were verified by DNA sequencing. Organoid growth in the absence of niche factors was assessed, as well as analysis of downstream molecular pathway activity. Orthotopic engraftment of complex organoid lines, but not BrafV600E alone, quickly generated adenocarcinoma in vivo with serrated features consistent with human disease. Loss of the essential DNA mismatch repair enzyme, Mlh1, led to microsatellite instability. Sphingolipid metabolism genes are differentially regulated in both our mouse models of serrated CRC and human CRC, with key members of this pathway having prognostic significance in the human setting. CONCLUSION: We generate rapid, complex models of serrated CRC to determine the contribution of specific genetic alterations to carcinogenesis. Analysis of our models alongside patient data has led to the identification of a potential susceptibility for this tumour type.
Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Organoides/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Adenocarcinoma/metabolismo , Alelos , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Ilhas de CpG/genética , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , Progressão da Doença , Epigenômica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Modelos Genéticos , Mutação , Organoides/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismoRESUMO
In vitro, cell cultures are essential tools in the study of intestinal function and disease. For the past few decades, monolayer cellular cultures, such as cancer cell lines or immortalized cell lines, have been widely applied in gastrointestinal research. Recently, the development of three-dimensional cultures known as organoids has permitted the growth of normal crypt-villus units that recapitulate many aspects of intestinal physiology. Organoid culturing has also been applied to study gastrointestinal diseases, intestinal-microbe interactions, and colorectal cancer. These models are amenable to CRISPR gene editing and drug treatments, including high-throughput small-molecule testing. Three-dimensional intestinal cultures have been transplanted into mice to develop versatile in vivo models of intestinal disease, particularly cancer. Limitations of currently available organoid models include cost and challenges in modeling nonepithelial intestinal cells, such as immune cells and the microbiota. Here, we describe the development of organoid models of intestinal biology and the applications of organoids for study of the pathophysiology of intestinal diseases and cancer.
Assuntos
Gastroenteropatias/patologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/fisiologia , Organoides/patologia , Organoides/fisiologia , Animais , Células Cultivadas , Gastroenteropatias/fisiopatologia , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/fisiopatologia , Trato Gastrointestinal/fisiopatologia , Humanos , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia , Mucosa Intestinal/fisiopatologia , Organoides/fisiopatologiaRESUMO
Cellulose acetate (CA), viscose, or artificial silk are biocompatible human-benign derivatives of cellulose, one of the most abundant biopolymers on earth. While various optical materials have been developed from CA, optical CA nanomaterials are nonexistent. Here we report on the assembly of a new family of extremely bright fluorescent CA nanoparticles (CA-dots), which are fully suitable for in vivo imaging / targeting applications. CA-dots can encapsulate a variety of molecular fluorophores. Using various commercially available fluorophores, we demonstrate that the fluorescence of CA-dots can be tuned within the entire UV-VIS-NIR spectrum. We also demonstrate excellent specific targeting of tumors in vivo, when injected in blood in zebrafish (xenograft model of human cervical epithelial cancer), and unusually strong ex-vivo topical labeling of colon cancer in mice utilizing CA folate-functionalized nanoparticles.
RESUMO
Gut dysbiosis may play an etiological role in colorectal tumorigenesis. We previously observed that the abundance of Parabacteroides distasonis (Pd) in stool was inversely associated with intestinal tumor burden and IL-1ß concentrations in mice. Here, we assessed the anti-inflammatory capacity of Pd membrane fraction (PdMb) in colon cancer cell lines. In addition, we tested whether Pd could suppress colon tumorigenesis in mice. Six-week-old male A/J mice were fed a low-fat (LF) diet, high-fat (HF) diet or HF+ whole freeze-dried Pd (HF + Pd, 0.04% wt/wt) for 24 weeks. After 1 week on diet, mice received 4 weekly injections of azoxymethane. PdMb robustly suppressed the production of pro-inflammatory cytokines and lowered the abundance of MyD88 and pAkt (ser473) induced by E. coli lipopolysaccharide in colon cancer cell lines. Moreover, PdMb induced apoptosis in colon cancer cell lines and blocked TLR4 activation in a reporter line. Colon tumors were observed in 0% of LF (0 of 19), 25% of HF (5 of 20) and 0% of HF + Pd mice (0 of 20) (p = 0.005). The latter group also displayed a lower abundance of MyD88 and pAkt (ser473) in colonic mucosa than HF mice. Taken together, these data suggest that Pd has anti-inflammatory and anti-cancer properties that are likely mediated by the suppression of TLR4 and Akt signaling, as well as promotion of apoptosis. Further work is needed to confirm these findings in additional models and fully elaborate the mechanism of action.