Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(13): e2218949120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940333

RESUMO

Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.


Assuntos
Alucinógenos , N,N-Dimetiltriptamina , Humanos , N,N-Dimetiltriptamina/farmacologia , Alucinógenos/farmacologia , Imageamento por Ressonância Magnética , Encéfalo , Eletroencefalografia
2.
PLoS Comput Biol ; 20(6): e1012178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829900

RESUMO

Striking progress has been made in understanding cognition by analyzing how the brain is engaged in different modes of information processing. For instance, so-called synergistic information (information encoded by a set of neurons but not by any subset) plays a key role in areas of the human brain linked with complex cognition. However, two questions remain unanswered: (a) how and why a cognitive system can become highly synergistic; and (b) how informational states map onto artificial neural networks in various learning modes. Here we employ an information-decomposition framework to investigate neural networks performing cognitive tasks. Our results show that synergy increases as networks learn multiple diverse tasks, and that in tasks requiring integration of multiple sources, performance critically relies on synergistic neurons. Overall, our results suggest that synergy is used to combine information from multiple modalities-and more generally for flexible and efficient learning. These findings reveal new ways of investigating how and why learning systems employ specific information-processing strategies, and support the principle that the capacity for general-purpose learning critically relies on the system's information dynamics.


Assuntos
Encéfalo , Cognição , Aprendizagem , Modelos Neurológicos , Redes Neurais de Computação , Humanos , Aprendizagem/fisiologia , Cognição/fisiologia , Encéfalo/fisiologia , Biologia Computacional , Neurônios/fisiologia
3.
Brain ; 147(1): 56-80, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37703310

RESUMO

Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.


Assuntos
Córtex Cerebral , Receptor 5-HT2A de Serotonina , Adulto , Humanos , Encéfalo , Córtex Cerebral/fisiologia , Cognição/fisiologia , Neuroimagem
4.
Psychol Med ; 54(8): 1717-1724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247730

RESUMO

BACKGROUND: To investigate the association between pre-trial expectancy, suggestibility, and response to treatment in a trial of escitalopram and investigational drug, COMP360, psilocybin, in the treatment of major depressive disorder (ClinicalTrials.gov registration: NCT03429075). METHODS: We used data (n = 55) from our recent double-blind, parallel-group, randomized head-to-head comparison trial of escitalopram and investigational drug, COMP360, psilocybin. Mixed linear models were used to investigate the association between pre-treatment efficacy-related expectations, as well as baseline trait suggestibility and absorption, and therapeutic response to both escitalopram and COMP360 psilocybin. RESULTS: Patients had significantly higher expectancy for psilocybin relative to escitalopram; however, expectancy for escitalopram was associated with improved therapeutic outcomes to escitalopram, expectancy for psilocybin was not predictive of response to psilocybin. Separately, we found that pre-treatment trait suggestibility was associated with therapeutic response in the psilocybin arm, but not in the escitalopram arm. CONCLUSIONS: Overall, our results suggest that psychedelic therapy may be less vulnerable to expectancy biases than previously suspected. The relationship between baseline trait suggestibility and response to psilocybin therapy implies that highly suggestible individuals may be primed for response to this treatment.


Assuntos
Transtorno Depressivo Maior , Escitalopram , Psilocibina , Sugestão , Humanos , Psilocibina/farmacologia , Psilocibina/administração & dosagem , Psilocibina/uso terapêutico , Masculino , Adulto , Feminino , Transtorno Depressivo Maior/tratamento farmacológico , Método Duplo-Cego , Pessoa de Meia-Idade , Escitalopram/farmacologia , Alucinógenos/farmacologia , Alucinógenos/administração & dosagem , Antecipação Psicológica/efeitos dos fármacos , Resultado do Tratamento , Citalopram/uso terapêutico , Citalopram/farmacologia , Citalopram/administração & dosagem
5.
PLoS Comput Biol ; 19(2): e1010811, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735751

RESUMO

A topic of growing interest in computational neuroscience is the discovery of fundamental principles underlying global dynamics and the self-organization of the brain. In particular, the notion that the brain operates near criticality has gained considerable support, and recent work has shown that the dynamics of different brain states may be modeled by pairwise maximum entropy Ising models at various distances from a phase transition, i.e., from criticality. Here we aim to characterize two brain states (psychedelics-induced and placebo) as captured by functional magnetic resonance imaging (fMRI), with features derived from the Ising spin model formalism (system temperature, critical point, susceptibility) and from algorithmic complexity. We hypothesized, along the lines of the entropic brain hypothesis, that psychedelics drive brain dynamics into a more disordered state at a higher Ising temperature and increased complexity. We analyze resting state blood-oxygen-level-dependent (BOLD) fMRI data collected in an earlier study from fifteen subjects in a control condition (placebo) and during ingestion of lysergic acid diethylamide (LSD). Working with the automated anatomical labeling (AAL) brain parcellation, we first create "archetype" Ising models representative of the entire dataset (global) and of the data in each condition. Remarkably, we find that such archetypes exhibit a strong correlation with an average structural connectome template obtained from dMRI (r = 0.6). We compare the archetypes from the two conditions and find that the Ising connectivity in the LSD condition is lower than in the placebo one, especially in homotopic links (interhemispheric connectivity), reflecting a significant decrease of homotopic functional connectivity in the LSD condition. The global archetype is then personalized for each individual and condition by adjusting the system temperature. The resulting temperatures are all near but above the critical point of the model in the paramagnetic (disordered) phase. The individualized Ising temperatures are higher in the LSD condition than in the placebo condition (p = 9 × 10-5). Next, we estimate the Lempel-Ziv-Welch (LZW) complexity of the binarized BOLD data and the synthetic data generated with the individualized model using the Metropolis algorithm for each participant and condition. The LZW complexity computed from experimental data reveals a weak statistical relationship with condition (p = 0.04 one-tailed Wilcoxon test) and none with Ising temperature (r(13) = 0.13, p = 0.65), presumably because of the limited length of the BOLD time series. Similarly, we explore complexity using the block decomposition method (BDM), a more advanced method for estimating algorithmic complexity. The BDM complexity of the experimental data displays a significant correlation with Ising temperature (r(13) = 0.56, p = 0.03) and a weak but significant correlation with condition (p = 0.04, one-tailed Wilcoxon test). This study suggests that the effects of LSD increase the complexity of brain dynamics by loosening interhemispheric connectivity-especially homotopic links. In agreement with earlier work using the Ising formalism with BOLD data, we find the brain state in the placebo condition is already above the critical point, with LSD resulting in a shift further away from criticality into a more disordered state.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Temperatura , Encéfalo , Imageamento por Ressonância Magnética/métodos
6.
Behav Res Methods ; 56(7): 8057-8079, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39080122

RESUMO

Psychological network approaches propose to see symptoms or questionnaire items as interconnected nodes, with links between them reflecting pairwise statistical dependencies evaluated on cross-sectional, time-series, or panel data. These networks constitute an established methodology to visualise and conceptualise the interactions and relative importance of nodes/indicators, providing an important complement to other approaches such as factor analysis. However, limiting the representation to pairwise relationships can neglect potentially critical information shared by groups of three or more variables (higher-order statistical interdependencies). To overcome this important limitation, here we propose an information-theoretic framework to assess these interdependencies and consequently to use hypergraphs as representations in psychometrics. As edges in hypergraphs are capable of encompassing several nodes together, this extension can thus provide a richer account on the interactions that may exist among sets of psychological variables. Our results show how psychometric hypergraphs can highlight meaningful redundant and synergistic interactions on either simulated or state-of-the-art, re-analysed psychometric datasets. Overall, our framework extends current network approaches while leading to new ways of assessing the data that differ at their core from other methods, enriching the psychometrics toolbox, and opening promising avenues for future investigation.


Assuntos
Psicometria , Psicometria/métodos , Psicometria/instrumentação , Humanos , Teoria da Informação , Inquéritos e Questionários
7.
Neuroimage ; 269: 119926, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740030

RESUMO

High-level brain functions are widely believed to emerge from the orchestrated activity of multiple neural systems. However, lacking a formal definition and practical quantification of emergence for experimental data, neuroscientists have been unable to empirically test this long-standing conjecture. Here we investigate this fundamental question by leveraging a recently proposed framework known as "Integrated Information Decomposition," which establishes a principled information-theoretic approach to operationalise and quantify emergence in dynamical systems - including the human brain. By analysing functional MRI data, our results show that the emergent and hierarchical character of neural dynamics is significantly diminished in chronically unresponsive patients suffering from severe brain injury. At a functional level, we demonstrate that emergence capacity is positively correlated with the extent of hierarchical organisation in brain activity. Furthermore, by combining computational approaches from network control theory and whole-brain biophysical modelling, we show that the reduced capacity for emergent and hierarchical dynamics in severely brain-injured patients can be mechanistically explained by disruptions in the patients' structural connectome. Overall, our results suggest that chronic unresponsiveness resulting from severe brain injury may be related to structural impairment of the fundamental neural infrastructures required for brain dynamics to support emergence.


Assuntos
Lesões Encefálicas , Conectoma , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Conectoma/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos
8.
Neuroimage ; 275: 120162, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196986

RESUMO

Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.


Assuntos
Lesões Encefálicas , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência/diagnóstico por imagem , Lesões Encefálicas/complicações , Neuroimagem , Simulação por Computador
9.
Chaos ; 33(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048252

RESUMO

Recent research has provided a wealth of evidence highlighting the pivotal role of high-order interdependencies in supporting the information-processing capabilities of distributed complex systems. These findings may suggest that high-order interdependencies constitute a powerful resource that is, however, challenging to harness and can be readily disrupted. In this paper, we contest this perspective by demonstrating that high-order interdependencies can not only exhibit robustness to stochastic perturbations, but can in fact be enhanced by them. Using elementary cellular automata as a general testbed, our results unveil the capacity of dynamical noise to enhance the statistical regularities between agents and, intriguingly, even alter the prevailing character of their interdependencies. Furthermore, our results show that these effects are related to the high-order structure of the local rules, which affect the system's susceptibility to noise and characteristic time scales. These results deepen our understanding of how high-order interdependencies may spontaneously emerge within distributed systems interacting with stochastic environments, thus providing an initial step toward elucidating their origin and function in complex systems like the human brain.

10.
Entropy (Basel) ; 25(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37190466

RESUMO

The recent link discovered between generalized Legendre transforms and non-dually flat statistical manifolds suggests a fundamental reason behind the ubiquity of Rényi's divergence and entropy in a wide range of physical phenomena. However, these early findings still provide little intuition on the nature of this relationship and its implications for physical systems. Here we shed new light on the Legendre transform by revealing the consequences of its deformation via symplectic geometry and complexification. These findings reveal a novel common framework that leads to a principled and unified understanding of physical systems that are not well-described by classic information-theoretic quantities.

11.
Neuroimage ; 259: 119433, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781077

RESUMO

Dynamic functional connectivity (dFC) in resting-state fMRI holds promise to deliver candidate biomarkers for clinical applications. However, the reliability and interpretability of dFC metrics remain contested. Despite a myriad of methodologies and resulting measures, few studies have combined metrics derived from different conceptualizations of brain functioning within the same analysis - perhaps missing an opportunity for improved interpretability. Using a complexity-science approach, we assessed the reliability and interrelationships of a battery of phase-based dFC metrics including tools originating from dynamical systems, stochastic processes, and information dynamics approaches. Our analysis revealed novel relationships between these metrics, which allowed us to build a predictive model for integrated information using metrics from dynamical systems and information theory. Furthermore, global metastability - a metric reflecting simultaneous tendencies for coupling and decoupling - was found to be the most representative and stable metric in brain parcellations that included cerebellar regions. Additionally, spatiotemporal patterns of phase-locking were found to change in a slow, non-random, continuous manner over time. Taken together, our findings show that the majority of characteristics of resting-state fMRI dynamics reflect an interrelated dynamical and informational complexity profile, which is unique to each acquisition. This finding challenges the interpretation of results from cross-sectional designs for brain neuromarker discovery, suggesting that individual life-trajectories may be more informative than sample means.


Assuntos
Encéfalo , Fractais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
12.
Neuroimage ; 263: 119624, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108798

RESUMO

Schizophrenia and states induced by certain psychotomimetic drugs may share some physiological and phenomenological properties, but they differ in fundamental ways: one is a crippling chronic mental disease, while the others are temporary, pharmacologically-induced states presently being explored as treatments for mental illnesses. Building towards a deeper understanding of these different alterations of normal consciousness, here we compare the changes in neural dynamics induced by LSD and ketamine (in healthy volunteers) against those associated with schizophrenia, as observed in resting-state M/EEG recordings. While both conditions exhibit increased neural signal diversity, our findings reveal that this is accompanied by an increased transfer entropy from the front to the back of the brain in schizophrenia, versus an overall reduction under the two drugs. Furthermore, we show that these effects can be reproduced via different alterations of standard Bayesian inference applied on a computational model based on the predictive processing framework. In particular, the effects observed under the drugs are modelled as a reduction of the precision of the priors, while the effects of schizophrenia correspond to an increased precision of sensory information. These findings shed new light on the similarities and differences between schizophrenia and two psychotomimetic drug states, and have potential implications for the study of consciousness and future mental health treatments.


Assuntos
Alucinógenos , Ketamina , Esquizofrenia , Humanos , Alucinógenos/farmacologia , Esquizofrenia/tratamento farmacológico , Teorema de Bayes , Encéfalo/fisiologia , Ketamina/farmacologia
13.
Neurobiol Dis ; 175: 105918, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375407

RESUMO

Brain functional networks have been traditionally studied considering only interactions between pairs of regions, neglecting the richer information encoded in higher orders of interactions. In consequence, most of the connectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more regions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysiology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neurodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and psychopathological-specific characterization of different neurodegenerative conditions.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Encéfalo/patologia , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
14.
Philos Trans A Math Phys Eng Sci ; 380(2227): 20210246, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35599558

RESUMO

Emergence is a profound subject that straddles many scientific disciplines, including the formation of galaxies and how consciousness arises from the collective activity of neurons. Despite the broad interest that exists on this concept, the study of emergence has suffered from a lack of formalisms that could be used to guide discussions and advance theories. Here, we summarize, elaborate on, and extend a recent formal theory of causal emergence based on information decomposition, which is quantifiable and amenable to empirical testing. This theory relates emergence with information about a system's temporal evolution that cannot be obtained from the parts of the system separately. This article provides an accessible but rigorous introduction to the framework, discussing the merits of the approach in various scenarios of interest. We also discuss several interpretation issues and potential misunderstandings, while highlighting the distinctive benefits of this formalism. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.


Assuntos
Estado de Consciência , Modelos Teóricos , Neurônios , Causalidade , Estado de Consciência/fisiologia , Neurônios/fisiologia
15.
Chaos ; 32(1): 013115, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35105139

RESUMO

The apparent dichotomy between information-processing and dynamical approaches to complexity science forces researchers to choose between two diverging sets of tools and explanations, creating conflict and often hindering scientific progress. Nonetheless, given the shared theoretical goals between both approaches, it is reasonable to conjecture the existence of underlying common signatures that capture interesting behavior in both dynamical and information-processing systems. Here, we argue that a pragmatic use of integrated information theory (IIT), originally conceived in theoretical neuroscience, can provide a potential unifying framework to study complexity in general multivariate systems. By leveraging metrics put forward by the integrated information decomposition framework, our results reveal that integrated information can effectively capture surprisingly heterogeneous signatures of complexity-including metastability and criticality in networks of coupled oscillators as well as distributed computation and emergent stable particles in cellular automata-without relying on idiosyncratic, ad hoc criteria. These results show how an agnostic use of IIT can provide important steps toward bridging the gap between informational and dynamical approaches to complex systems.


Assuntos
Cognição , Processamento Eletrônico de Dados , Teoria da Informação
16.
Behav Brain Sci ; 45: e215, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36172767

RESUMO

The free-energy principle (FEP) builds on an assumption that sensor-motor loops exhibit Markov blankets in stationary state. We argue that there is rarely reason to assume a system's internal and external states are conditionally independent given the sensorimotor states, and often reason to assume otherwise. However, under mild assumptions internal and external states are conditionally independent given the sensorimotor history.


Assuntos
Entropia , Humanos , Tempo
17.
Phys Rev Lett ; 127(12): 124101, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597101

RESUMO

When employing nonlinear methods to characterize complex systems, it is important to determine to what extent they are capturing genuine nonlinear phenomena that could not be assessed by simpler spectral methods. Specifically, we are concerned with the problem of quantifying spectral and phasic effects on an observed difference in a nonlinear feature between two systems (or two states of the same system). Here we derive, from a sequence of null models, a decomposition of the difference in an observable into spectral, phasic, and spectrum-phase interaction components. Our approach makes no assumptions about the structure of the data and adds nuance to a wide range of time series analyses.

18.
PLoS Comput Biol ; 16(12): e1008289, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347467

RESUMO

The broad concept of emergence is instrumental in various of the most challenging open scientific questions-yet, few quantitative theories of what constitutes emergent phenomena have been proposed. This article introduces a formal theory of causal emergence in multivariate systems, which studies the relationship between the dynamics of parts of a system and macroscopic features of interest. Our theory provides a quantitative definition of downward causation, and introduces a complementary modality of emergent behaviour-which we refer to as causal decoupling. Moreover, the theory allows practical criteria that can be efficiently calculated in large systems, making our framework applicable in a range of scenarios of practical interest. We illustrate our findings in a number of case studies, including Conway's Game of Life, Reynolds' flocking model, and neural activity as measured by electrocorticography.


Assuntos
Simulação por Computador , Teoria da Informação , Modelos Biológicos , Animais , Comportamento Animal , Aves , Causalidade , Biologia Computacional , Haplorrinos , Humanos , Modelos Estatísticos , Análise Multivariada , Neurofisiologia
19.
Psychol Sci ; 31(12): 1497-1510, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137263

RESUMO

Haunted attractions are illustrative examples of recreational fear in which people voluntarily seek out frightening experiences in pursuit of enjoyment. We present findings from a field study at a haunted-house attraction where visitors between the ages of 12 and 57 years (N = 110) were equipped with heart rate monitors, video-recorded at peak scare points during the attraction, and asked to report on their experience. Our results show that enjoyment has an inverted-U-shaped relationship with fear across repeated self-reported measures. Moreover, results from physiological data demonstrate that the experience of being frightened is a linear function of large-scale heart rate fluctuations, whereas there is an inverted-U-shaped relationship between participant enjoyment and small-scale heart rate fluctuations. These results suggest that enjoyment is related to forms of arousal dynamics that are "just right." These findings shed light on how fear and enjoyment can coexist in recreational horror.


Assuntos
Medo , Prazer , Adolescente , Adulto , Nível de Alerta , Criança , Emoções , Frequência Cardíaca , Humanos , Pessoa de Meia-Idade , Adulto Jovem
20.
Comput Biol Med ; 170: 107857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244468

RESUMO

Recent research is revealing how cognitive processes are supported by a complex interplay between the brain and the rest of the body, which can be investigated by the analysis of physiological features such as breathing rhythms, heart rate, and skin conductance. Heart rate dynamics are of particular interest as they provide a way to track the sympathetic and parasympathetic outflow from the autonomic nervous system, which is known to play a key role in modulating attention, memory, decision-making, and emotional processing. However, extracting useful information from heartbeats about the autonomic outflow is still challenging due to the noisy estimates that result from standard signal-processing methods. To advance this state of affairs, we propose a novel approach in how to conceptualise and model heart rate: instead of being a mere summary of the observed inter-beat intervals, we introduce a modelling framework that views heart rate as a hidden stochastic process that drives the observed heartbeats. Moreover, by leveraging the rich literature of state-space modelling and Bayesian inference, our proposed framework delivers a description of heart rate dynamics that is not a point estimate but a posterior distribution of a generative model. We illustrate the capabilities of our method by showing that it recapitulates linear properties of conventional heart rate estimators, while exhibiting a better discriminative power for metrics of dynamical complexity compared across different physiological states.


Assuntos
Sistema Nervoso Autônomo , Coração , Frequência Cardíaca/fisiologia , Teorema de Bayes , Sistema Nervoso Autônomo/fisiologia , Encéfalo/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa