Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell Proteomics ; 22(5): 100534, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958627

RESUMO

Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium-spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72-induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A:EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism, and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image analysis, we found that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Animais , Neurônios/metabolismo , Neurônios Espinhosos Médios , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Gotículas Lipídicas/metabolismo , Proteômica , Corpo Estriado/metabolismo , Modelos Animais de Doenças
2.
J Am Soc Nephrol ; 35(2): 135-148, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38044490

RESUMO

SIGNIFICANCE STATEMENT: In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND: Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS: Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS: Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS: DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.


Assuntos
Injúria Renal Aguda , Ácidos Dicarboxílicos , Suplementos Nutricionais , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Cisplatino , Ácidos Dicarboxílicos/administração & dosagem , Ácidos Graxos , Proteômica , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia
3.
Proteomics ; 24(5): e2300162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775337

RESUMO

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A ZenoTOF 7600 mass spectrometer was optimized for data-independent acquisition (DIA) to achieve comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured kidneys exhibited severely damaged tissues and injury markers. The comprehensive and sensitive kidney-specific DIA-MS assays feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome, and will serve as useful tools for developing novel therapeutics to remediate kidney function.


Assuntos
Injúria Renal Aguda , Proteômica , Humanos , Camundongos , Animais , Idoso , Proteoma , Regulação para Baixo , Rim
4.
Neurobiol Dis ; 190: 106367, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042508

RESUMO

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.


Assuntos
Distonia , Distúrbios Distônicos , Doenças Neurodegenerativas , Transtornos Parkinsonianos , Humanos , Distonia/genética , Distonia/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteômica , Fator de Transcrição TFIID/genética , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo
5.
Proteomics ; 23(3-4): e2100371, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479818

RESUMO

Post-translational modifications (PTMs) dynamically regulate proteins and biological pathways, typically through the combined effects of multiple PTMs. Lysine residues are targeted for various PTMs, including malonylation and succinylation. However, PTMs offer specific challenges to mass spectrometry-based proteomics during data acquisition and processing. Thus, novel and innovative workflows using data-independent acquisition (DIA) ensure confident PTM identification, precise site localization, and accurate and robust label-free quantification. In this study, we present a powerful approach that combines antibody-based enrichment with comprehensive DIA acquisitions and spectral library-free data processing using directDIA (Spectronaut). Identical DIA data can be used to generate spectral libraries and comprehensively identify and quantify PTMs, reducing the amount of enriched sample and acquisition time needed, while offering a fully automated workflow. We analyzed brains from wild-type and Sirtuin 5 (SIRT5)-knock-out mice, and discovered and quantified 466 malonylated and 2211 succinylated peptides. SIRT5 regulation remodeled the acylomes by targeting 164 malonylated and 578 succinylated sites. Affected pathways included carbohydrate and lipid metabolisms, synaptic vesicle cycle, and neurodegenerative diseases. We found 48 common SIRT5-regulated malonylation and succinylation sites, suggesting potential PTM crosstalk. This innovative and efficient workflow offers deeper insights into the mouse brain lysine malonylome and succinylome.


Assuntos
Encéfalo , Lisina , Sirtuínas , Animais , Camundongos , Lisina/metabolismo , Espectrometria de Massas , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Sirtuínas/metabolismo , Encéfalo/metabolismo
6.
Proteomics ; 23(7-8): e2200021, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36228107

RESUMO

Early events associated with chronic inflammation and cancer involve significant remodeling of the extracellular matrix (ECM), which greatly affects its composition and functional properties. Using lung squamous cell carcinoma (LSCC), a chronic inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to discover potential biomarker signatures and protein changes specifically in the stroma. We combined ECM enrichment from fresh human tissues, data-independent acquisition (DIA) strategies, and stringent statistical processing to analyze "Tumor" and matched adjacent histologically normal ("Matched Normal") tissues from patients with LSCC. Overall, 1802 protein groups were quantified with at least two unique peptides, and 56% of those proteins were annotated as "extracellular." Confirming dramatic ECM remodeling during CIAC progression, 529 proteins were significantly altered in the "Tumor" compared to "Matched Normal" tissues. The signature was typified by a coordinated loss of basement membrane proteins and small leucine-rich proteins. The dramatic increase in the stromal levels of SERPINH1/heat shock protein 47, that was discovered using our ECM proteomic pipeline, was validated by immunohistochemistry (IHC) of "Tumor" and "Matched Normal" tissues, obtained from an independent cohort of LSCC patients. This integrated workflow provided novel insights into ECM remodeling during CIAC progression, and identified potential biomarker signatures and future therapeutic targets.


Assuntos
Carcinoma de Células Escamosas , Proteômica , Humanos , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Carcinoma de Células Escamosas/patologia , Inflamação/metabolismo , Proteínas da Matriz Extracelular/metabolismo
7.
J Proteome Res ; 22(2): 311-322, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36165806

RESUMO

In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.


Assuntos
Proteômica , Software , Proteômica/métodos , Proteólise , Espectrometria de Massas/métodos , Fluxo de Trabalho , Marcação por Isótopo/métodos
8.
J Hepatol ; 79(1): 25-42, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36822479

RESUMO

BACKGROUND & AIMS: The consumption of sugar and a high-fat diet (HFD) promotes the development of obesity and metabolic dysfunction. Despite their well-known synergy, the mechanisms by which sugar worsens the outcomes associated with a HFD are largely elusive. METHODS: Six-week-old, male, C57Bl/6 J mice were fed either chow or a HFD and were provided with regular, fructose- or glucose-sweetened water. Moreover, cultured AML12 hepatocytes were engineered to overexpress ketohexokinase-C (KHK-C) using a lentivirus vector, while CRISPR-Cas9 was used to knockdown CPT1α. The cell culture experiments were complemented with in vivo studies using mice with hepatic overexpression of KHK-C and in mice with liver-specific CPT1α knockout. We used comprehensive metabolomics, electron microscopy, mitochondrial substrate phenotyping, proteomics and acetylome analysis to investigate underlying mechanisms. RESULTS: Fructose supplementation in mice fed normal chow and fructose or glucose supplementation in mice fed a HFD increase KHK-C, an enzyme that catalyzes the first step of fructolysis. Elevated KHK-C is associated with an increase in lipogenic proteins, such as ACLY, without affecting their mRNA expression. An increase in KHK-C also correlates with acetylation of CPT1α at K508, and lower CPT1α protein in vivo. In vitro, KHK-C overexpression lowers CPT1α and increases triglyceride accumulation. The effects of KHK-C are, in part, replicated by a knockdown of CPT1α. An increase in KHK-C correlates negatively with CPT1α protein levels in mice fed sugar and a HFD, but also in genetically obese db/db and lipodystrophic FIRKO mice. Mechanistically, overexpression of KHK-C in vitro increases global protein acetylation and decreases levels of the major cytoplasmic deacetylase, SIRT2. CONCLUSIONS: KHK-C-induced acetylation is a novel mechanism by which dietary fructose augments lipogenesis and decreases fatty acid oxidation to promote the development of metabolic complications. IMPACT AND IMPLICATIONS: Fructose is a highly lipogenic nutrient whose negative consequences have been largely attributed to increased de novo lipogenesis. Herein, we show that fructose upregulates ketohexokinase, which in turn modifies global protein acetylation, including acetylation of CPT1a, to decrease fatty acid oxidation. Our findings broaden the impact of dietary sugar beyond its lipogenic role and have implications on drug development aimed at reducing the harmful effects attributed to sugar metabolism.


Assuntos
Carnitina O-Palmitoiltransferase , Fígado , Masculino , Camundongos , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/farmacologia , Acetilação , Fígado/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Frutose/metabolismo , Frutoquinases/genética , Frutoquinases/metabolismo
9.
Biochem Soc Trans ; 48(5): 1953-1966, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33079175

RESUMO

Research into the basic biology of human health and disease, as well as translational human research and clinical applications, all benefit from the growing accessibility and versatility of mass spectrometry (MS)-based proteomics. Although once limited in throughput and sensitivity, proteomic studies have quickly grown in scope and scale over the last decade due to significant advances in instrumentation, computational approaches, and bio-sample preparation. Here, we review these latest developments in MS and highlight how these techniques are used to study the mechanisms, diagnosis, and treatment of human diseases. We first describe recent groundbreaking technological advancements for MS-based proteomics, including novel data acquisition techniques and protein quantification approaches. Next, we describe innovations that enable the unprecedented depth of coverage in protein signaling and spatiotemporal protein distributions, including studies of post-translational modifications, protein turnover, and single-cell proteomics. Finally, we explore new workflows to investigate protein complexes and structures, and we present new approaches for protein-protein interaction studies and intact protein or top-down MS. While these approaches are only recently incipient, we anticipate that their use in biomedical MS proteomics research will offer actionable discoveries for the improvement of human health.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Cromatografia , Humanos , Inflamação , Isótopos , Camundongos , Medicina de Precisão , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteoma/metabolismo , Transdução de Sinais , Pesquisa Translacional Biomédica , Fluxo de Trabalho
10.
J Exp Biol ; 218(Pt 2): 194-205, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25452499

RESUMO

Scratch-digging mammals are commonly described as having large, powerful forelimb muscles for applying high force to excavate earth, yet studies quantifying the architectural properties of the musculature are largely unavailable. To further test hypotheses about traits that represent specializations for scratch-digging, we quantified muscle architectural properties and myosin expression in the forelimb of the groundhog (Marmota monax), a digger that constructs semi-complex burrows. Architectural properties measured were muscle moment arm, muscle mass (MM), belly length (ML), fascicle length (l(F)), pennation angle and physiological cross-sectional area (PCSA), and these metrics were used to estimate maximum isometric force, joint torque and power. Myosin heavy chain (MHC) isoform composition was determined in selected forelimb muscles by SDS-PAGE and densitometry analysis. Groundhogs have large limb retractors and elbow extensors that are capable of applying moderately high torque at the shoulder and elbow joints, respectively. Most of these muscles (e.g. latissimus dorsi and pectoralis superficialis) have high l(F)/ML ratios, indicating substantial shortening ability and moderate power. The unipennate triceps brachii long head has the largest PCSA and is capable of the highest joint torque at both the shoulder and elbow joints. The carpal and digital flexors show greater pennation and shorter fascicle lengths than the limb retractors and elbow extensors, resulting in higher PCSA/MM ratios and force production capacity. Moreover, the digital flexors have the capacity for both appreciable fascicle shortening and force production, indicating high muscle work potential. Overall, the forelimb musculature of the groundhog is capable of relatively low sustained force and power, and these properties are consistent with the findings of a predominant expression of the MHC-2A isoform. Aside from the apparent modifications to the digital flexors, the collective muscle properties observed are consistent with its behavioral classification as a less-specialized burrower and these may be more representative of traits common to numerous rodents with burrowing habits or mammals with some fossorial ability.


Assuntos
Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Marmota/anatomia & histologia , Animais , Fenômenos Biomecânicos , Feminino , Articulações/fisiologia , Masculino , Marmota/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Miosinas/análise , Isoformas de Proteínas/análise , Torque
11.
STAR Protoc ; 5(2): 103074, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771695

RESUMO

Lysine malonylation is a protein posttranslational modification. We present a protocol to generate stable gene-knockdown K562 cell lines through lentiviral infection of a CRISPR interference (CRISPRi) system followed by lysine malonylation measurement using mass spectrometry (MS). We detail guide RNA (gRNA) vector cloning, lentiviral infection, cell line purification, protein digestion, malonyl-lysine enrichment, desalting, and MS acquisition and analysis. For complete details on the use and execution of this protocol, please refer to Zhang et al.1 and Bons et al.2.


Assuntos
Lisina Acetiltransferases , Lisina , Espectrometria de Massas , Humanos , Células K562 , Lisina/metabolismo , Espectrometria de Massas/métodos , Lisina Acetiltransferases/metabolismo , Lisina Acetiltransferases/genética , Sistemas CRISPR-Cas , Processamento de Proteína Pós-Traducional , Malonatos/metabolismo , RNA Guia de Sistemas CRISPR-Cas/metabolismo
12.
Sci Rep ; 14(1): 12493, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822014

RESUMO

In a series of experiments involving beliefs and misinformation beliefs, we find that individuals who are prompted with a counterfactual mindset are significantly more likely to change their existing beliefs when presented with evidence that contradicts their beliefs. While research finds that beliefs that are considered part of one's identity are highly resistant to change in the face of evidence that challenges these beliefs, four experiments provide evidence that counterfactual generation causes individuals to adjust beliefs and correct misinformation beliefs in response to contradicting evidence. Indeed, we find that a counterfactual mindset was effective in promoting incorporation of accurate facts and causing individuals to revise misinformation beliefs about COVID vaccination safety for a large sample of individuals who have rejected COVID vaccinations. Finally, the results of the psychophysiological experiment reveal that counterfactual generation alters decision makers' search strategies, increases their cognitive arousal in response to evidence that challenges their beliefs, and increases their desire to seek out disconfirming evidence. Overall, the four experiments indicate that counterfactual generation can effectively activate mindsets that increase individuals' willingness to evaluate evidence that contradicts their beliefs and adjust their beliefs in response to evidence.


Assuntos
COVID-19 , Comunicação , Humanos , Feminino , Masculino , COVID-19/psicologia , COVID-19/prevenção & controle , Adulto , Adulto Jovem , Vacinas contra COVID-19/administração & dosagem , SARS-CoV-2 , Tomada de Decisões , Vacinação/psicologia , Cultura , Conhecimentos, Atitudes e Prática em Saúde
13.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979258

RESUMO

Senescence emerged as a significant mechanism of aging and age-related diseases, offering an attractive target for clinical interventions. Senescent cells release a senescence-associated secretory phenotype (SASP), including exosomes that may act as signal transducers between distal tissues, propagating secondary or bystander senescence and signaling throughout the body. However, the composition of exosome SASP remains underexplored, presenting an opportunity for novel unbiased discovery. Here, we present a detailed proteomic and lipidomic analysis of exosome SASP using mass spectrometry from human plasma from young and older individuals and from tissue culture of senescent primary human lung fibroblasts. We identified ~1,300 exosome proteins released by senescent fibroblasts induced by three different senescence inducers causing most exosome proteins to be differentially regulated with senescence. In parallel, a human plasma cohort from young and old individuals revealed over 1,350 exosome proteins and 171 plasma exosome proteins were regulated when comparing old vs young individuals. Of the age-regulated plasma exosome proteins, we observed 52 exosome SASP factors that were also regulated in exosomes from the senescent fibroblasts, including serine protease inhibitors (SERPINs), Prothrombin, Coagulation factor V, Plasminogen, and Reelin. In addition, 247 lipids were identified with high confidence in all exosome samples. Following the senescence inducers, a majority of the identified phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin species increased significantly indicating cellular membrane changes. The most notable categories of significantly changed proteins were related to extracellular matrix remodeling and inflammation, both potentially detrimental pathways that can damage surrounding tissues and even induce secondary or bystander senescence. Our findings reveal mechanistic insights and potential senescence biomarkers, enabling a better approach to surveilling the senescence burden in the aging population and offering promising therapeutic targets for interventions.

14.
Bone Res ; 12(1): 13, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409111

RESUMO

Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFß signaling (TßRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFß signaling and PLR, but aging did not worsen the existing PLR suppression in male TßRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFß. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFß-dependent maintenance of collagen integrity.


Assuntos
Remodelação Óssea , Osteócitos , Humanos , Idoso , Masculino , Animais , Camundongos , Remodelação Óssea/fisiologia , Colágeno/farmacologia , Envelhecimento , Fator de Crescimento Transformador beta/farmacologia
15.
Nat Metab ; 6(3): 550-566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448615

RESUMO

The post-translational modification lysine succinylation is implicated in the regulation of various metabolic pathways. However, its biological relevance remains uncertain due to methodological difficulties in determining high-impact succinylation sites. Here, using stable isotope labelling and data-independent acquisition mass spectrometry, we quantified lysine succinylation stoichiometries in mouse livers. Despite the low overall stoichiometry of lysine succinylation, several high-stoichiometry sites were identified, especially upon deletion of the desuccinylase SIRT5. In particular, multiple high-stoichiometry lysine sites identified in argininosuccinate synthase (ASS1), a key enzyme in the urea cycle, are regulated by SIRT5. Mutation of the high-stoichiometry lysine in ASS1 to succinyl-mimetic glutamic acid significantly decreased its enzymatic activity. Metabolomics profiling confirms that SIRT5 deficiency decreases urea cycle activity in liver. Importantly, SIRT5 deficiency compromises ammonia tolerance, which can be reversed by the overexpression of wild-type, but not succinyl-mimetic, ASS1. Therefore, lysine succinylation is functionally important in ammonia metabolism.


Assuntos
Lisina , Sirtuínas , Camundongos , Animais , Lisina/química , Lisina/metabolismo , Amônia , Sirtuínas/metabolismo , Camundongos Knockout , Ureia
16.
Nat Commun ; 15(1): 467, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212606

RESUMO

Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.


Assuntos
Envelhecimento , Doenças do Sistema Nervoso , Humanos , Feminino , Envelhecimento/genética , Longevidade/genética , Neurônios/metabolismo , Doenças do Sistema Nervoso/metabolismo , Encéfalo/metabolismo , Restrição Calórica , Proteínas Mitocondriais/metabolismo
17.
J Clin Invest ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687608

RESUMO

Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.

18.
J Bone Metab ; 30(1): 1-29, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36950837

RESUMO

Molecular omics technologies, including proteomics, have enabled the elucidation of key signaling pathways that mediate bidirectional communication between the brain and bone tissues. Here we provide a brief summary of the clinical and molecular evidence of the need to study the bone-brain axis of cross-tissue cellular communication. Clear clinical and molecular evidence suggests biological interactions and similarities between bone and brain cells. Here we review the current mass spectrometric techniques for studying brain and bone diseases with an emphasis on neurodegenerative diseases and osteoarthritis/osteoporosis, respectively. Further study of the bone-brain axis on a molecular level and evaluation of the role of proteins, neuropeptides, osteokines, and hormones in molecular pathways linked to bone and brain diseases is critically needed. The use of mass spectrometry and other omics technologies to analyze these cross-tissue signaling events and interactions will help us better understand disease progression and comorbidities and potentially identify new pathways and targets for therapeutic interventions. Proteomic measurements are particularly favorable for investigating the role of signaling and secreted and circulating analytes and identifying molecular and metabolic pathways implicated in age-related diseases.

19.
iScience ; 26(3): 106193, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879797

RESUMO

The posttranslational modification lysine malonylation is found in many proteins, including histones. However, it remains unclear whether histone malonylation is regulated or functionally relevant. Here, we report that availability of malonyl-co-enzyme A (malonyl-CoA), an endogenous malonyl donor, affects lysine malonylation, and that the deacylase SIRT5 selectively reduces malonylation of histones. To determine if histone malonylation is enzymatically catalyzed, we knocked down each of the 22 lysine acetyltransferases (KATs) to test their malonyltransferase potential. KAT2A knockdown in particular reduced histone malonylation levels. By mass spectrometry, H2B_K5 was highly malonylated and regulated by SIRT5 in mouse brain and liver. Acetyl-CoA carboxylase (ACC), the malonyl-CoA producing enzyme, was partly localized in the nucleolus, and histone malonylation increased nucleolar area and ribosomal RNA expression. Levels of global lysine malonylation and ACC expression were higher in older mouse brains than younger mice. These experiments highlight the role of histone malonylation in ribosomal gene expression.

20.
PLoS One ; 18(10): e0292268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37816044

RESUMO

Dysregulation of cell signaling in chondrocytes and in bone cells, such as osteocytes, osteoblasts, osteoclasts, and an elevated burden of senescent cells in cartilage and bone, are implicated in osteoarthritis (OA). Mass spectrometric analyses provides a crucial molecular tool-kit to understand complex signaling relationships in age-related diseases, such as OA. Here we introduce a novel mass spectrometric workflow to promote proteomic studies of bone. This workflow uses highly specialized steps, including extensive overnight demineralization, pulverization, and incubation for 72 h in 6 M guanidine hydrochloride and EDTA, followed by proteolytic digestion. Analysis on a high-resolution Orbitrap Eclipse and Orbitrap Exploris 480 mass spectrometer using Data-Independent Acquisition (DIA) provides deep coverage of the bone proteome, and preserves post-translational modifications, such as hydroxyproline. A spectral library-free quantification strategy, directDIA, identified and quantified over 2,000 protein groups (with ≥ 2 unique peptides) from calcium-rich bone matrices. Key components identified were proteins of the extracellular matrix (ECM), bone-specific proteins (e.g., secreted protein acidic and cysteine rich, SPARC, and bone sialoprotein 2, IBSP), and signaling proteins (e.g., transforming growth factor beta-2, TGFB2), and lysyl oxidase homolog 2 (LOXL2), an important protein in collagen crosslinking. Post-translational modifications (PTMs) were identified without the need for specific enrichment. This includes collagen hydroxyproline modifications, chemical modifications for collagen self-assembly and network formation. Multiple senescence factors were identified, such as complement component 3 (C3) protein of the complement system and many matrix metalloproteinases, that might be monitored during age-related bone disease progression. Our innovative workflow yields in-depth protein coverage and quantification strategies to discover underlying biological mechanisms of bone aging and to provide tools to monitor therapeutic interventions. These novel tools to monitor the bone proteome open novel horizons to investigate bone-specific diseases, many of which are age-related.


Assuntos
Osteoartrite , Proteoma , Humanos , Proteoma/análise , Proteômica/métodos , Hidroxiprolina , Osso e Ossos/metabolismo , Osteoartrite/metabolismo , Colágeno
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa