Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Pathol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032602

RESUMO

Although hyponatremia and salt wasting are common in patients with HIV/AIDS, the understanding of their contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the distal tubules and on the expression level of the Slc12a3 gene, encoding the sodium-chloride cotransporter (which is responsible for sodium reabsorption in distal nephron segments), single-nucleus RNA sequencing was performed on kidney cortices from three wild-type (WT) and three Vpr transgenic (Vpr Tg) mice. The results show that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05); in Vpr Tg mice, Slc12a3 expression was not significantly different in DCT cells. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT mice (P < 0.01). Immunohistochemistry revealed fewer Slc12a3+Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis between Vpr Tg and WT samples in the DCT cluster showed down-regulation of the Ier3 gene, which is an inhibitor of apoptosis. The in vitro knockdown of Ier3 by siRNA transfection induced apoptosis in mouse DCT cells. These observations suggest that the salt-wasting effect of Vpr in Vpr Tg mice is likely mediated by Ier3 down-regulation in DCT1 cells and loss of Slc12a3+Pvalb+ DCT1 segments.

2.
Am J Physiol Cell Physiol ; 326(4): C1272-C1290, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602847

RESUMO

Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Nefropatias , MicroRNAs , Neoplasias , Estado Pré-Diabético , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Feminino , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estado Pré-Diabético/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Rim , Glucose/farmacologia , MicroRNAs/farmacologia , Sódio
3.
Am J Physiol Renal Physiol ; 327(3): F450-F462, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38961841

RESUMO

HIV disease remains prevalent in the United States and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 wk of age. Multiomic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin, and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidneys, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Furthermore, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared with those of WT mice. Restoration of NAD levels in the kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.NEW & NOTEWORTHY The study describes a novel investigation that identified nicotinamide adenine dinucleotide (NAD) deficiency in a widely used HIV-associated nephropathy (HIVAN) transgenic mouse model. We show that INT-747, a farnesoid X receptor agonist, and nicotinamide riboside (NR), a precursor of nicotinamide, each ameliorated HIVAN tubulopathy. Multiomic analysis of mouse kidneys revealed that NAD deficiency was an upstream metabolomic mechanism contributing to HIVAN tubulopathy.


Assuntos
Nefropatia Associada a AIDS , Camundongos Transgênicos , NAD , Niacinamida , Compostos de Piridínio , Sirtuína 3 , Animais , NAD/metabolismo , Nefropatia Associada a AIDS/metabolismo , Nefropatia Associada a AIDS/genética , Nefropatia Associada a AIDS/patologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Sirtuína 3/metabolismo , Sirtuína 3/genética , Sirtuína 3/deficiência , Modelos Animais de Doenças , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Progressão da Doença , Metabolômica , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Rim/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
4.
Lab Invest ; 104(5): 100336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266922

RESUMO

Chronic kidney disease progresses through the replacement of functional tissue compartments with fibrosis, a maladaptive repair process. Shifting kidney repair toward a physiologically intact architecture, rather than fibrosis, is key to blocking chronic kidney disease progression. Much research into the mechanisms of fibrosis is performed in rodent models with less attention to the human genetic context. Recently, human induced pluripotent stem cell (iPSC)-derived organoids have shown promise in overcoming the limitation. In this study, we developed a fibrosis model that uses human iPSC-based 3-dimensional renal organoids, in which exogenous transforming growth factor-ß1 (TGF-ß1) induced the production of extracellular matrix. TGF-ß1-treated organoids showed tubulocentric collagen 1α1 production by regulating downstream transcriptional regulators, Farnesoid X receptor, phosphorylated mothers against decapentaplegic homolog 3 (p-SMAD3), and transcriptional coactivator with PDZ-binding motif (TAZ). Increased nuclear TAZ expression was confirmed in the tubular epithelium in human kidney biopsies with tubular injury and early fibrosis. A dual bile acid receptor agonist (INT-767) increased Farnesoid X receptor and reduced p-SMAD3 and TAZ, attenuating TGF-ß1-induced fibrosis in kidney organoids. Finally, we show that TAZ interacted with TEA-domain transcription factors and p-SMAD3 with TAZ and TEA-domain transcription factor 4 coregulating collagen 1α1 gene transcription. In summary, we establish a novel, readily manipulable fibrogenesis model and posit a role for bile acid receptor agonism early in renal parenchymal fibrosis.


Assuntos
Fibrose , Células-Tronco Pluripotentes Induzidas , Rim , Organoides , Fator de Crescimento Transformador beta1 , Humanos , Organoides/metabolismo , Organoides/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Rim/metabolismo , Rim/patologia
5.
7.
Artigo em Inglês | MEDLINE | ID: mdl-38813089

RESUMO

Artificial intelligence (AI) has extensive applications in a wide range of disciplines including healthcare and clinical practice. Advances in high-resolution whole-slide brightfield microscopy allow for the digitization of histologically stained tissue sections, producing gigapixel-scale whole-slide images (WSI). The significant improvement in computing and revolution of deep neural network (DNN)-based AI technologies over the last decade allow us to integrate massively parallelized computational power, cutting-edge AI algorithms, and big data storage, management, and processing. Applied to WSIs, AI has created opportunities for improved disease diagnostics and prognostics with the ultimate goal of enhancing precision medicine and resulting patient care. The National Institutes of Health (NIH) has recognized the importance of developing standardized principles for data management and discovery for the advancement of science and proposed the Findable, Accessible, Interoperable, Reusable, (FAIR) Data Principles1 with the goal of building a modernized biomedical data resource ecosystem to establish collaborative research communities. In line with this mission and to democratize AI-based image analysis in digital pathology, we propose ComPRePS: an end-to-end automated Computational Renal Pathology Suite which combines massive scalability, on-demand cloud computing, and an easy-to-use web-based user interface for data upload, storage, management, slide-level visualization, and domain expert interaction. Moreover, our platform is equipped with both in-house and collaborator developed sophisticated AI algorithms in the back-end server for image analysis to identify clinically relevant micro-anatomic functional tissue units (FTU) and to extract image features.

8.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38585837

RESUMO

Artificial intelligence (AI) has extensive applications in a wide range of disciplines including healthcare and clinical practice. Advances in high-resolution whole-slide brightfield microscopy allow for the digitization of histologically stained tissue sections, producing gigapixel-scale whole-slide images (WSI). The significant improvement in computing and revolution of deep neural network (DNN)-based AI technologies over the last decade allow us to integrate massively parallelized computational power, cutting-edge AI algorithms, and big data storage, management, and processing. Applied to WSIs, AI has created opportunities for improved disease diagnostics and prognostics with the ultimate goal of enhancing precision medicine and resulting patient care. The National Institutes of Health (NIH) has recognized the importance of developing standardized principles for data management and discovery for the advancement of science and proposed the Findable, Accessible, Interoperable, Reusable, (FAIR) Data Principles1 with the goal of building a modernized biomedical data resource ecosystem to establish collaborative research communities. In line with this mission and to democratize AI-based image analysis in digital pathology, we propose ComPRePS: an end-to-end automated Computational Renal Pathology Suite which combines massive scalability, on-demand cloud computing, and an easy-to-use web-based user interface for data upload, storage, management, slide-level visualization, and domain expert interaction. Moreover, our platform is equipped with both in-house and collaborator developed sophisticated AI algorithms in the back-end server for image analysis to identify clinically relevant micro-anatomic functional tissue units (FTU) and to extract image features.

9.
Sci Rep ; 14(1): 17528, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080444

RESUMO

HistoLens is an open-source graphical user interface developed using MATLAB AppDesigner for visual and quantitative analysis of histological datasets. HistoLens enables users to interrogate sets of digitally annotated whole slide images to efficiently characterize histological differences between disease and experimental groups. Users can dynamically visualize the distribution of 448 hand-engineered features quantifying color, texture, morphology, and distribution across microanatomic sub-compartments. Additionally, users can map differentially detected image features within the images by highlighting affected regions. We demonstrate the utility of HistoLens to identify hand-engineered features that correlate with pathognomonic renal glomerular characteristics distinguishing diabetic nephropathy and amyloid nephropathy from the histologically unremarkable glomeruli in minimal change disease. Additionally, we examine the use of HistoLens for glomerular feature discovery in the Tg26 mouse model of HIV-associated nephropathy. We identify numerous quantitative glomerular features distinguishing Tg26 transgenic mice from wild-type mice, corresponding to a progressive renal disease phenotype. Thus, we demonstrate an off-the-shelf and ready-to-use toolkit for quantitative renal pathology applications.


Assuntos
Camundongos Transgênicos , Animais , Camundongos , Glomérulos Renais/patologia , Rim/patologia , Nefropatias/patologia , Modelos Animais de Doenças , Nefropatias Diabéticas/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos
10.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464264

RESUMO

Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD + ) is a small molecule that participates in hundreds of metabolism-related reactions. NAD + levels are decreased in CKD, and NAD + supplementation is protective. However, both the mechanism of how NAD + supplementation protects from CKD, as well as the cell types most responsible, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD + precursor, stimulates renal peroxisome proliferator-activated receptor α signaling and restores FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing shows that renal metabolic pathways are impaired in Alport mice and dramatically activated by NR in both sexes. These transcriptional changes are confirmed by orthogonal imaging techniques and biochemical assays. Single nuclei RNA-sequencing and spatial transcriptomics, both the first of their kind from Alport mice, show that NAD + supplementation restores FAO in the proximal tubules with minimal effects on the podocytes. Finally, we also report, for the first time, sex differences at the transcriptional level in this Alport model. Male Alport mice had more severe inflammation and fibrosis than female mice at the transcriptional level. In summary, the data herein identify both the protective mechanism and location of NAD + supplementation in this model of CKD.

11.
bioRxiv ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39026885

RESUMO

Spatial -OMICS technologies facilitate the interrogation of molecular profiles in the context of the underlying histopathology and tissue microenvironment. Paired analysis of histopathology and molecular data can provide pathologists with otherwise unobtainable insights into biological mechanisms. To connect the disparate molecular and histopathologic features into a single workspace, we developed FUSION (Functional Unit State IdentificatiON in WSIs [Whole Slide Images]), a web-based tool that provides users with a broad array of visualization and analytical tools including deep learning-based algorithms for in-depth interrogation of spatial -OMICS datasets and their associated high-resolution histology images. FUSION enables end-to-end analysis of functional tissue units (FTUs), automatically aggregating underlying molecular data to provide a histopathology-based medium for analyzing healthy and altered cell states and driving new discoveries using "pathomic" features. We demonstrate FUSION using 10x Visium spatial transcriptomics (ST) data from both formalin-fixed paraffin embedded (FFPE) and frozen prepared datasets consisting of healthy and diseased tissue. Through several use-cases, we demonstrate how users can identify spatial linkages between quantitative pathomics, qualitative image characteristics, and spatial --omics.

12.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617362

RESUMO

Many data resources generate, process, store, or provide kidney related molecular, pathological, and clinical data. Reference ontologies offer an opportunity to support knowledge and data integration. The Kidney Precision Medicine Project (KPMP) team contributed to the representation and addition of 329 kidney phenotype terms to the Human Phenotype Ontology (HPO), and identified many subcategories of acute kidney injury (AKI) or chronic kidney disease (CKD). The Kidney Tissue Atlas Ontology (KTAO) imports and integrates kidney-related terms from existing ontologies (e.g., HPO, CL, and Uberon) and represents 259 kidney-related biomarkers. We also developed a precision medicine metadata ontology (PMMO) to integrate 50 variables from KPMP and CZ CellxGene data resources and applied PMMO for integrative kidney data analysis. The gene expression profiles of kidney gene biomarkers were specifically analyzed under healthy control or AKI/CKD disease statuses. This work demonstrates how ontology-based approaches support multi-domain data and knowledge integration in precision medicine.

13.
Front Cell Dev Biol ; 11: 1270980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125876

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa