Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 22(5): e3002625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771885

RESUMO

Yersinia pestis, the causative agent of plague, is a highly lethal vector-borne pathogen responsible for killing large portions of Europe's population during the Black Death of the Middle Ages. In the wild, Y. pestis cycles between fleas and rodents; occasionally spilling over into humans bitten by infectious fleas. For this reason, fleas and the rats harboring them have been considered the main epidemiological drivers of previous plague pandemics. Human ectoparasites, such as the body louse (Pediculus humanus humanus), have largely been discounted due to their reputation as inefficient vectors of plague bacilli. Using a membrane-feeder adapted strain of body lice, we show that the digestive tract of some body lice become chronically infected with Y. pestis at bacteremia as low as 1 × 105 CFU/ml, and these lice routinely defecate Y. pestis. At higher bacteremia (≥1 × 107 CFU/ml), a subset of the lice develop an infection within the Pawlowsky glands (PGs), a pair of putative accessory salivary glands in the louse head. Lice that developed PG infection transmitted Y. pestis more consistently than those with bacteria only in the digestive tract. These glands are thought to secrete lubricant onto the mouthparts, and we hypothesize that when infected, their secretions contaminate the mouthparts prior to feeding, resulting in bite-based transmission of Y. pestis. The body louse's high level of susceptibility to infection by gram-negative bacteria and their potential to transmit plague bacilli by multiple mechanisms supports the hypothesis that they may have played a role in previous human plague pandemics and local outbreaks.


Assuntos
Pediculus , Peste , Yersinia pestis , Animais , Yersinia pestis/patogenicidade , Yersinia pestis/fisiologia , Pediculus/microbiologia , Pediculus/fisiologia , Humanos , Peste/transmissão , Peste/microbiologia , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Mordeduras e Picadas de Insetos/microbiologia , Feminino , Masculino
2.
J Infect Dis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842160

RESUMO

BACKGROUND: Nipah virus is an emerging zoonotic virus that causes severe respiratory disease and meningoencephalitis. The pathophysiology of Nipah virus meningoencephalitis is poorly understood. METHODS: We have collected the brains of African green monkeys during multiple Nipah virus, Bangladesh studies, resulting in 14 brains with Nipah virus-associated lesions. RESULTS: The lesions seen in the brain of African green monkeys infected with Nipah virus, Bangladesh were very similar to those observed in humans with Nipah virus, Malaysia infection. We observed viral RNA and antigen within neurons and endothelial cells, within encephalitis foci and in uninflamed portions of the CNS. CD8+ T cells had a consistently high prevalence in CNS lesions. We developed a UNet model for quantifying and visualizing inflammation in the brain in a high-throughput and unbiased manner. While CD8+ T cells had a consistently high prevalence in CNS lesions, the model revealed that CD68+ cells were numerically the immune cell with the highest prevalence in the CNS of NiV-infected animals. CONCLUSION: Our study provides an in-depth analysis on Nipah virus infection in the brains of primates, and similarities between lesions in patients and the animals in our study validate this model.

3.
Ticks Tick Borne Dis ; 15(2): 102301, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38134511

RESUMO

A bite from an infected tick is the primary means of transmission for tick-borne flaviviruses (TBFV). Ticks ingest the virus while feeding on infected blood. The traditional view is that the virus first replicates in and transits the tick midgut prior to dissemination to other organs, including salivary glands. Thus, understanding TBFV infection in the tick midgut is a key first step in identifying potential countermeasures against infection. Ex vivo midgut cultures prepared from unfed adult female Ixodes scapularis ticks were viable and remained morphologically intact for more than 8 days. The midgut consisted of two clearly defined cell layers separated by a basement membrane: an exterior network of smooth muscle cells and an internal epithelium composed of digestive generative cells. The smooth muscle cells were arranged in a stellate circumferential pattern spaced at regular intervals along the long axis of midgut diverticula. When the cultures were infected with the TBFV Langat virus (LGTV), virus production increased by two logs with a peak at 96 hours post-infection. Infected cells were readily identified by immunofluorescence staining for the viral envelope protein, nonstructural protein 3 (NS3) and dsRNA. Microscopy of the stained cultures suggested that generative cells were the primary target for virus infection in the midgut. Infected cells exhibited an expansion of membranes derived from the endoplasmic reticulum; a finding consistent with TBFV infected cell cultures. Electron microscopy of infected cultures revealed virus particles in the basolateral region between epithelial cells. These results demonstrated LGTV replication in midgut generative cells of artificially infected, ex vivo cultures of unfed adult female I. scapularis ticks.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Flavivirus , Ixodes , Feminino , Animais , Flavivirus/genética , Vírus da Encefalite Transmitidos por Carrapatos/genética , Glândulas Salivares , Microscopia Eletrônica , RNA de Cadeia Dupla
4.
Nat Microbiol ; 9(5): 1231-1243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649413

RESUMO

The 2022 mpox virus (MPXV) outbreak was sustained by human-to-human transmission; however, it is currently unclear which factors lead to sustained transmission of MPXV. Here we present Mastomys natalensis as a model for MPXV transmission after intraperitoneal, rectal, vaginal, aerosol and transdermal inoculation with an early 2022 human outbreak isolate (Clade IIb). Virus shedding and tissue replication were route dependent and occurred in the presence of self-resolving localized skin, lung, reproductive tract or rectal lesions. Mucosal inoculation via the rectal, vaginal and aerosol routes led to increased shedding, replication and a pro-inflammatory T cell profile compared with skin inoculation. Contact transmission was higher from rectally inoculated animals. This suggests that transmission might be sustained by increased susceptibility of the anal and genital mucosae for infection and subsequent virus release.


Assuntos
Mpox , Mucosa , Eliminação de Partículas Virais , Animais , Feminino , Masculino , Modelos Animais de Doenças , Surtos de Doenças , Mucosa/virologia , Roedores/virologia , Vagina/virologia , Replicação Viral , Mpox/transmissão , Mpox/veterinária , Mpox/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa