Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063035

RESUMO

Circadian oscillations of several physiological and behavioral processes are an established process in all the organisms anticipating the geophysical changes recurring during the day. The time-keeping mechanism is controlled by a transcription translation feedback loop involving a set of well-characterized transcription factors. The synchronization of cells, controlled at the organismal level by a brain central clock, can be mimicked in vitro, pointing to the notion that all the cells are endowed with an autonomous time-keeping system. Metabolism undergoes circadian control, including the mitochondrial terminal catabolic pathways, culminating under aerobic conditions in the electron transfer to oxygen through the respiratory chain coupled to the ATP synthesis according to the oxidative phosphorylation chemiosmotic mechanism. In this study, we expanded upon previous isolated observations by utilizing multiple cell types, employing various synchronization protocols and different methodologies to measure mitochondrial oxygen consumption rates under conditions simulating various metabolic stressors. The results obtained clearly demonstrate that mitochondrial respiratory activity undergoes rhythmic oscillations in all tested cell types, regardless of their individual respiratory proficiency, indicating a phenomenon that can be generalized. However, notably, while primary cell types exhibited similar rhythmic respiratory profiles, cancer-derived cell lines displayed highly heterogeneous rhythmic changes. This observation confirms on the one hand the dysregulation of the circadian control of the oxidative metabolism observed in cancer, likely contributing to its development, and on the other hand underscores the necessity of personalized chronotherapy, which necessitates a detailed characterization of the cancer chronotype.


Assuntos
Ritmo Circadiano , Mitocôndrias , Consumo de Oxigênio , Humanos , Mitocôndrias/metabolismo , Ritmo Circadiano/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Respiração Celular , Linhagem Celular Tumoral , Fosforilação Oxidativa
2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894823

RESUMO

The current view of the mitochondrial respiratory chain complexes I, III and IV foresees the occurrence of their assembly in supercomplexes, providing additional functional properties when compared with randomly colliding isolated complexes. According to the plasticity model, the two structural states of the respiratory chain may interconvert, influenced by the intracellular prevailing conditions. In previous studies, we suggested the mitochondrial membrane potential as a factor for controlling their dynamic balance. Here, we investigated if and how the cAMP/PKA-mediated signalling influences the aggregation state of the respiratory complexes. An analysis of the inhibitory titration profiles of the endogenous oxygen consumption rates in intact HepG2 cells with specific inhibitors of the respiratory complexes was performed to quantify, in the framework of the metabolic flux theory, the corresponding control coefficients. The attained results, pharmacologically inhibiting either PKA or sAC, indicated that the reversible phosphorylation of the respiratory chain complexes/supercomplexes influenced their assembly state in response to the membrane potential. This conclusion was supported by the scrutiny of the available structure of the CI/CIII2/CIV respirasome, enabling us to map several PKA-targeted serine residues exposed to the matrix side of the complexes I, III and IV at the contact interfaces of the three complexes.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Transporte de Elétrons , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa