Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Annu Rev Phys Chem ; 74: 1-27, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36719975

RESUMO

Phillip L. Geissler made important contributions to the statistical mechanics of biological polymers, heterogeneous materials, and chemical dynamics in aqueous environments. He devised analytical and computational methods that revealed the underlying organization of complex systems at the frontiers of biology, chemistry, and materials science. In this retrospective we celebrate his work at these frontiers.


Assuntos
Física , Masculino , Humanos , Estudos Retrospectivos , Físico-Química
2.
Biophys J ; 118(11): 2680-2693, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32413311

RESUMO

Proteins in photosynthetic membranes can organize into patterned arrays that span the membrane's lateral size. Attractions between proteins in different layers of a membrane stack can play a key role in this ordering, as was suggested by microscopy and fluorescence spectroscopy and demonstrated by computer simulations of a coarse-grained model. The architecture of thylakoid membranes, however, also provides opportunities for interlayer interactions that instead disfavor the high protein densities of ordered arrangements. Here, we explore the interplay between these opposing driving forces and, in particular, the phase transitions that emerge in the periodic geometry of stacked thylakoid membrane disks. We propose a lattice model that roughly accounts for proteins' attraction within a layer and across the stromal gap, steric repulsion across the lumenal gap, and regulation of protein density by exchange with the stroma lamellae. Mean-field analysis and computer simulation reveal rich phase behavior for this simple model, featuring a broken-symmetry striped phase that is disrupted at both high and low extremes of chemical potential. The resulting sensitivity of microscopic protein arrangement to the thylakoid's mesoscale vertical structure raises intriguing possibilities for regulation of photosynthetic function.


Assuntos
Complexo de Proteína do Fotossistema II , Tilacoides , Simulação por Computador , Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
3.
J Comput Chem ; 36(25): 1874-84, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26224547

RESUMO

Recent advances in polarizable force fields have revealed that major reparameterization is necessary when the polarization energy is treated explicitly. This study is focused on the torsional parameters, which are crucial for the accurate description of conformational equilibria in biomolecules. In particular, attention is paid to the influence of polarization on the (i) transferability of dihedral terms between molecules, (ii) transferability between different environments, and (iii) additivity of dihedral energies. To this end, three polarizable force fields based on the induced point dipole model designed for use in AMBER are tested, including two recent ff02 reparameterizations. Attention is paid to the contributions due to short range interactions (1-2, 1-3, and 1-4) within the four atoms defining the dihedral angle. The results show that when short range 1-2 and 1-3 polarization interactions are omitted, as for instance in ff02, the 1-4 polarization contribution is rather small and unlikely to improve the description of the torsional energy. Conversely, when screened 1-2 and 1-3 interactions are included, the polarization contribution is sizeable and shows potential to improve the transferability of parameters between different molecules and environments as well as the additivity of dihedral terms. However, to reproduce intramolecular polarization effects accurately, further fine-tuning of the short range damping of polarization is necessary.


Assuntos
Dicloretos de Etileno/química , Halogenação , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Solventes/química , Eletricidade Estática , Termodinâmica , Água/química
4.
J Phys Chem B ; 127(26): 5772-5788, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37357785

RESUMO

Fluorescent proteins (FPs) have had an enormous impact on molecular and cellular biology and are employed in a wide range of studies of molecular structure and dynamics. Yet, only a modest number of papers have published molecular dynamics (MD) parameters describing FPs. And despite the development of a wide range of FPs, there has been no careful development of MD parameters across a series of FPs. In this work, we present MD parameters describing six fluorescent protein chromophores (EGFP, EBFP, EYFP, ECFP, mCherry, and DsRed) for use with the Cornell et al. ( J. Am. Chem. Soc. 1995, 117, 5179-5197) family of AMBER force fields, including ff14SB and ff19SB. We explore a wide range of solvent dielectric constants for determining the chromophore equilibrium geometry and evaluate the impact of the modeled solvent on the final atomic charges. We also present our methodological approach in which we considered all six chromophores together with a focus on modularity, transferability, and balance with existing force fields. The parameters given here make it easy to employ MD simulations to study any of the six systems, whereas the methodology makes it easy for anyone to extend this work to develop consistent parameters for additional fluorescent proteins. The results of our own MD simulations are presented, showing that the classical MD parameters yield chromophore structural distributions that compare well with QM/MM simulations.


Assuntos
Simulação de Dinâmica Molecular , Estrutura Molecular , Solventes
5.
J Chem Theory Comput ; 11(12): 5826-37, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26610205

RESUMO

Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.


Assuntos
Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Simulação de Dinâmica Molecular , Proteínas de Plantas/química , Água/química , Brassica/metabolismo , Clorofila/metabolismo , Clorofila A , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa