Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Sens ; 2(9): 1272-1277, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28871783

RESUMO

The surface species responsible for NO2 gas sensing over indium oxide was studied by operando DRIFTS coupled to a multivariate spectral analysis. It revealed the important roles of surface nitrites on the temperature-dependent gas sensing mechanism and the interaction of such nitrites with surface hydroxyls. A highly hydroxylated surface with high concentration of surface adsorbed H2O is beneficial to enhance the concentration of adsorbed NO2, present as nitrites, thus explaining superior sensing response at lower operating temperatures.

2.
Beilstein J Nanotechnol ; 7: 1507-1518, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144501

RESUMO

We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa