Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 588(Pt 2): 353-64, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19948655

RESUMO

The mammalian genome contains three ancient sarcomeric myosin heavy chain (MYH) genes, MYH14/7b, MYH15 and MYH16, in addition to the two well characterized clusters of skeletal and cardiac MYHs. MYH16 is expressed in jaw muscles of carnivores; however the expression pattern of MYH14 and MYH15 is not known. MYH14 and MYH15 orthologues are present in frogs and birds, coding for chicken slow myosin 2 and ventricular MYH, respectively, whereas only MYH14 orthologues have been detected in fish. In all species the MYH14 gene contains a microRNA, miR-499. Here we report that in rat and mouse, MYH14 and miR-499 transcripts are detected in heart, slow muscles and extraocular (EO) muscles, whereas MYH15 transcripts are detected exclusively in EO muscles. However, MYH14 protein is detected only in a minor fibre population in EO muscles, corresponding to slow-tonic fibres, and in bag fibres of muscle spindles. MYH15 protein is present in most fibres of the orbital layer of EO muscles and in the extracapsular region of bag fibres. During development, MYH14 is expressed at low levels in skeletal muscles, heart and all EO muscle fibres but disappears from most fibres, except the slow-tonic fibres, after birth. In contrast, MYH15 is absent in embryonic and fetal muscles and is first detected after birth in the orbital layer of EO muscles. The identification of the expression pattern of MYH14 and MYH15 brings to completion the inventory of the MYH isoforms involved in sarcomeric architecture of skeletal muscles and provides an unambiguous molecular basis to study the contractile properties of slow-tonic fibres in mammals.


Assuntos
Fusos Musculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Músculos Oculomotores/metabolismo , Animais , Western Blotting , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Am Heart Assoc ; 8(15): e013318, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31364453

RESUMO

Background In mammals, muscle contraction is controlled by a family of 10 sarcomeric myosin motors. The expression of one of its members, MYH7b, is regulated by alternative splicing, and while the protein is restricted to specialized muscles such as extraocular muscles or muscle spindles, RNA that cannot encode protein is expressed in most skeletal muscles and in the heart. Remarkably, birds and snakes express MYH7b protein in both heart and skeletal muscles. This observation suggests that in the mammalian heart, the motor activity of MYH7b may only be needed during development since its expression is prevented in adult tissue, possibly because it could promote disease by unbalancing myocardial contractility. Methods and Results We have analyzed MYH7b null mice to determine the potential role of MYH7b during cardiac development and also generated transgenic mice with cardiac myocyte expression of MYH7b protein to measure its impact on cardiomyocyte function and contractility. We found that MYH7b null mice are born at expected Mendelian ratios and do not have a baseline cardiac phenotype as adults. In contrast, transgenic cardiac MYH7b protein expression induced early cardiac dilation in males with significantly increased left ventricular mass in both sexes. Cardiac dilation is progressive, leading to early cardiac dysfunction in males, but later dysfunction in females. Conclusions The data presented show that the expression of MYH7b protein in the mammalian heart has been inhibited during the evolution of mammals most likely to prevent the development of a severe cardiomyopathy that is sexually dimorphic.


Assuntos
Cardiomiopatia Dilatada/etiologia , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/biossíntese , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Skelet Muscle ; 5: 22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26180627

RESUMO

Developing skeletal muscles express unique myosin isoforms, including embryonic and neonatal myosin heavy chains, coded by the myosin heavy chain 3 (MYH3) and MYH8 genes, respectively, and myosin light chain 1 embryonic/atrial, encoded by the myosin light chain 4 (MYL4) gene. These myosin isoforms are transiently expressed during embryonic and fetal development and disappear shortly after birth when adult fast and slow myosins become prevalent. However, developmental myosins persist throughout adult stages in specialized muscles, such as the extraocular and jaw-closing muscles, and in the intrafusal fibers of the muscle spindles. These myosins are re-expressed during muscle regeneration and provide a specific marker of regenerating fibers in the pathologic skeletal muscle. Mutations in MYH3 or MYH8 are responsible for distal arthrogryposis syndromes, characterized by congenital joint contractures and orofacial dysmorphisms, supporting the importance of muscle contractile activity and body movements in joint development and in shaping the form of the face during fetal development. The biochemical and biophysical properties of developmental myosins have only partially been defined, and their functional significance is not yet clear. One possibility is that these myosins are specialized in contracting against low loads, and thus, they may be adapted to the prenatal environment, when fetal muscles contract against a very low load compared to postnatal muscles.

4.
Int J Biochem Cell Biol ; 45(10): 2191-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23702032

RESUMO

Muscle wasting occurs in a variety of conditions, including both genetic diseases, such as muscular dystrophies, and acquired disorders, ranging from muscle disuse to cancer cachexia, from heart failure to aging sarcopenia. In most of these conditions, the loss of muscle tissue is not homogeneous, but involves specific muscle groups, for example Duchenne muscular dystrophy affects most body muscles but spares extraocular muscles, and other dystrophies affect selectively proximal or distal limb muscles. In addition, muscle atrophy can affect specific fiber types, involving predominantly slow type 1 or fast type 2 muscle fibers, and is frequently accompanied by a slow-to-fast or fast-to-slow fiber type shift. For example, muscle disuse, such as spinal cord injury, causes type 1 fiber atrophy with a slow-to-fast fiber type shift, whereas cancer cachexia leads to preferential atrophy of type 2 fibers with a fast-to-slow fiber type shift. The identification of the signaling pathways responsible for the differential response of muscles types and fiber types can lead to a better understanding of the pathogenesis of muscle wasting and to the design of therapeutic interventions appropriate for the specific disorders. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Assuntos
Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Atrofia Muscular/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Humanos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Atrofia Muscular/metabolismo , Distrofia Muscular de Duchenne/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa