Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Oecologia ; 202(3): 589-599, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37458813

RESUMO

Responses of one species to climate change may influence the population dynamics of others, particularly in the Arctic where food webs are strongly linked. Specifically, changes to the cryosphere may limit prey availability for predators. We examined Arctic (Vulpes lagopus) and red fox (V. vulpes) population dynamics near the southern edge of the Arctic fox distribution using fur harvest records from Churchill, Manitoba, Canada between 1955 and 2012. Arctic foxes showed a declining population trend over time (inferred from harvest records corrected for trapping effort), whereas the red fox population trend was relatively stable. The positive relationship between the annual Arctic and red fox harvests suggested interspecific competition did not promote the Arctic fox decline. To investigate alternative mechanisms, we evaluated the relative influence of sea-ice phenology, snow depth, snow duration, winter thaws, and summer temperature on the harvest dynamics of both species in the most recent 32 years (1980-2012; n = 29) of our data. Arctic fox harvests were negatively related to the length of time Hudson Bay was free of sea ice. Shorter sea ice duration may reduce access to seal carrion as an alternative winter food source when lemming densities decline. Contrary to our prediction, red fox harvest was not related to summer temperature but was positively related to snow depth, suggesting winter prey availability may limit red fox population growth. Predators have an important ecological role, so understanding the influence of changes in the cryosphere on predator-prey interactions may better illuminate the broader influence of climate change on food-web dynamics.


Assuntos
Ecossistema , Raposas , Animais , Raposas/fisiologia , Cadeia Alimentar , Regiões Árticas , Dinâmica Populacional , Arvicolinae/fisiologia
2.
Environ Res ; 236(Pt 1): 116727, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37495068

RESUMO

All ecosystems are exposed to a variety of anthropogenic contaminants. The potential threat posed by these contaminants to organisms has prompted scores of toxicology studies. Contaminant concentrations in wildlife toxicology studies are inconsistently expressed in wet or dry mass units, or even on a lipid-normalized basis, but tissue composition is rarely reported, and the conversion between dry and wet mass units, notably, is often based on assumed empirical moisture contents in tissues. However, diverse factors (e.g., tissue, storage conditions) may affect tissue composition and render comparisons between studies difficult or potentially biased. Here, we used data on the concentration of mercury, a global pollutant, in tissues of red foxes (Vulpes vulpes) to quantify the effects of diverse variables on moisture and lipid contents, and their consequences on contaminant concentration in different tissues, when converting between wet and dry mass units (lipid extracted or not). We found that moisture content differed largely between organs, enough to preclude the use of a single conversion factor, and decreased by 1% per year when stored at -80 °C. Although most fox tissues had low lipid concentrations, lipid content affected water content and their extraction affected the wet to dry mass conversion factor. We thus recommend reporting tissue composition (at least water and lipid contents) systematically in toxicology studies of mercury specifically and of contaminants in general, and using tissue/species specific conversion factors to convert between dry and wet mass concentration.


Assuntos
Poluentes Ambientais , Mercúrio , Ecossistema , Poluentes Ambientais/análise , Mercúrio/toxicidade , Mercúrio/análise , Lipídeos/toxicidade , Água
3.
J Exp Biol ; 222(Pt 11)2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31097602

RESUMO

Arctic marine ecosystems are currently undergoing rapid environmental changes. Over the past 20 years, individual growth rates of beluga whales (Delphinapterus leucas) have declined, which may be a response to climate change; however, the scarcity of physiological data makes it difficult to gauge the adaptive capacity and resilience of the species. We explored relationships between body condition and physiological parameters pertaining to oxygen (O2) storage capacity in 77 beluga whales in the eastern Beaufort Sea. Muscle myoglobin concentrations averaged 77.9 mg g-1, one of the highest values reported among mammals. Importantly, blood haematocrit, haemoglobin and muscle myoglobin concentrations correlated positively to indices of body condition, including maximum half-girth to length ratios. Thus, a whale with the lowest body condition index would have ∼27% lower blood (26.0 versus 35.7 ml kg-1) and 12% lower muscle (15.6 versus 17.7 ml kg-1) O2 stores than a whale of equivalent mass with the highest body condition index; with the conservative assumption that underwater O2 consumption rates are unaffected by body condition, this equates to a >3 min difference in maximal aerobic dive time between the two extremes (14.3 versus 17.4 min). Consequently, environmental changes that negatively impact body condition may hinder the ability of whales to reach preferred prey sources, evade predators and escape ice entrapments. The relationship between body condition and O2 storage capacity may represent a vicious cycle, in which environmental changes resulting in decreased body condition impair foraging, leading to further reductions in condition through diminished prey acquisition and/or increased foraging efforts.


Assuntos
Beluga/fisiologia , Músculos/química , Oxigênio/análise , Oxigênio/sangue , Animais , Composição Corporal , Feminino , Hematócrito , Hemoglobinas/análise , Masculino , Mioglobina/análise , Territórios do Noroeste
4.
J Anim Ecol ; 85(5): 1265-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27155132

RESUMO

Predators affect prey populations not only through direct predation, but also by acting as definitive hosts for their parasites and completing parasite life cycles. Understanding the affects of parasitism on prey population dynamics requires knowing how their predators' parasite community is affected by diet and prey availability. Ungulates, such as moose (Alces americanus) and white-tailed deer (Odocoileus virginianus), are often important prey for wolves (Canis lupus), but wolves also consume a variety of alternative prey, including beaver (Castor canadensis) and snowshoe hare (Lepus americanus). The use of alternative prey, which may host different or fewer parasites than ungulates, could potentially reduce overall abundance of ungulate parasites within the ecosystem, benefiting both wolves and ungulate hosts. We examined parasites in wolf carcasses from eastern Manitoba and estimated wolf diet using stable isotope analysis. Taeniidae cestodes were present in most wolves (75%), reflecting a diet primarily comprised of ungulates, but nematodes were unexpectedly rare. Cestode abundance was negatively related to the wolf's δ(13) C value, indicating diet affects parasite abundance. Wolves that consumed a higher proportion of beaver and caribou (Rangifer tarandus), estimated using Bayesian mixing models, had lower cestode abundance, suggesting the use of these alternative prey can reduce parasite loads. Long-term consumption of beavers may lower the abundance of adult parasites in wolves, eventually lowering parasite density in the region and ultimately benefiting ungulates that serve as intermediate hosts. Thus, alternative prey can affect both predator-prey and host-parasite interactions and potentially affect food web dynamics.


Assuntos
Dieta , Interações Hospedeiro-Parasita , Roedores , Lobos/fisiologia , Lobos/parasitologia , Animais , Cestoides/fisiologia , Infecções por Cestoides/parasitologia , Infecções por Cestoides/veterinária , Manitoba , Nematoides/fisiologia , Infecções por Nematoides/parasitologia , Infecções por Nematoides/veterinária , Carga Parasitária/veterinária , Comportamento Predatório
5.
Ecol Evol ; 13(3): e9951, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36993144

RESUMO

Resource fluctuation is a major driver of animal movement, influencing strategic choices such as residency vs nomadism, or social dynamics. The Arctic tundra is characterized by strong seasonality: Resources are abundant during the short summers but scarce in winters. Therefore, expansion of boreal-forest species onto the tundra raises questions on how they cope with winter-resource scarcity. We examined a recent incursion by red foxes (Vulpes vulpes) onto the coastal tundra of northern Manitoba, an area historically occupied by Arctic foxes (Vulpes lagopus) that lacks access to anthropogenic foods, and compared seasonal shifts in space use of the two species. We used 4 years of telemetry data following 8 red foxes and 11 Arctic foxes to test the hypothesis that the movement tactics of both species are primarily driven by temporal variability of resources. We also predicted that the harsh tundra conditions in winter would drive red foxes to disperse more often and maintain larger home ranges year-round than Arctic foxes, which are adapted to this environment. Dispersal was the most frequent winter movement tactic in both fox species, despite its association with high mortality (winter mortality was 9.4 times higher in dispersers than residents). Red foxes consistently dispersed toward the boreal forest, whereas Arctic foxes primarily used sea ice to disperse. Home range size of red and Arctic foxes did not differ in summer, but resident red foxes substantially increased their home range size in winter, whereas home range size of resident Arctic foxes did not change seasonally. As climate changes, abiotic constraints on some species may relax, but associated declines in prey communities may lead to local extirpation of many predators, notably by favoring dispersal during resource scarcity.

6.
Mov Ecol ; 11(1): 60, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784160

RESUMO

BACKGROUND: Range expansion of species, a major consequence of climate changes, may alter communities substantially due to competition between expanding and native species. METHODS: We first quantified size differences between an expanding habitat generalist, the red fox (Vulpes vulpes), and a circumpolar habitat specialist, the Arctic foxes (Vulpes lagopus), at the edge of the Arctic, where climate-related changes occur rapidly, to predict the likelihood of the larger competitor escalating interference to intraguild killing. We then used satellite telemetry to evaluate competition in a heterogeneous landscape by examining space use early during the foxes' reproductive period, when resource scarcity, increased-food requirements and spatial constraints likely exacerbate the potential for interference. We used time-LoCoH to quantify space and habitat use, and Minta's index to quantify spatio-temporal interactions between neighbors. RESULTS: Our morphometric comparison involving 236 foxes found that the potential for escalated interference between these species was high due to intermediate size difference. However, our results from 17 collared foxes suggested that expanding and native competitors may coexist when expanding species occur at low densities. Low home-range overlap between neighbors suggested territoriality and substantial exploitation competition for space. No obvious differential use of areas shared by heterospecific neighbors suggested low interference. If anything, intraspecific competition between red foxes may be stronger than interspecific competition. Red and Arctic foxes used habitat differentially, with near-exclusive use of forest patches by red foxes and marine habitats by Arctic foxes. CONCLUSION: Heterogeneous landscapes may relax interspecific competition between expanding and native species, allowing exclusive use of some resources. Furthermore, the scarcity of habitats favored by expanding species may emphasize intraspecific competition between newcomers over interspecific competition, thus creating the potential for self-limitation of expanding populations. Dominant expanding competitors may benefit from interference, but usually lack adaptations to abiotic conditions at their expansion front, favoring rear-edge subordinate species in exploitation competition. However, due to ongoing climate change, systems are usually not at equilibrium. A spread of habitats and resources favorable to expanding species may promote higher densities of antagonistically dominant newcomers, which may lead to extirpation of native species.

7.
Methods Mol Biol ; 2625: 241-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653648

RESUMO

Lipid extraction is an important component of many ecological and ecotoxicological measurements. For instance, percent lipid is often used as a measure of body condition, under the assumption that those individuals with higher lipid reserves are healthier. Likewise, lipids are depleted in 13C compared with protein, and it is consequently a routine to remove lipids prior to measuring carbon isotopes in ecological studies so that variation in lipid content does not obscure variation in diet. We provide detailed methods for two different protocols for lipid extraction: Soxhlet apparatus and manual distillation. We also provide methods for polar and non-polar solvents. Neutral (non-polar) solvents remove some lipids but few non-lipid compounds whereas polar solvents remove not only most lipids but also many non-lipid compounds. We discuss each of the methods and provide guidelines for best practices. We recommend that for stable isotope analysis, researchers test for a relationship between the change in the carbon stable isotope ratio and the amount of lipid extracted to see if the degree of extraction has an impact on isotope ratios. Stable isotope analysis is widely used by ecologists, and we provide a detailed methodology that minimizes known biases.


Assuntos
Carbono , Humanos , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Solventes
8.
Parasit Vectors ; 15(1): 115, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365191

RESUMO

BACKGROUND: In changing northern ecosystems, understanding the mechanisms of transmission of zoonotic pathogens, including the coccidian parasite Toxoplasma gondii, is essential to protect the health of vulnerable animals and humans. As high-level predators and scavengers, foxes represent a potentially sensitive indicator of the circulation of T. gondii in environments where humans co-exist. The objectives of our research were to compare serological and molecular assays to detect T. gondii, generate baseline data on T. gondii antibody and tissue prevalence in foxes in northern Canada, and compare regional seroprevalence in foxes with that in people from recently published surveys across northern Canada. METHODS: Fox carcasses (Vulpes vulpes/Vulpes lagopus, n = 749) were collected by local trappers from the eastern (Labrador and Québec) and western Canadian Arctic (northern Manitoba, Nunavut, and the Northwest Territories) during the winters of 2015-2019. Antibodies in heart fluid were detected using a commercial enzyme-linked immunosorbent assay. Toxoplasma gondii DNA was detected in hearts and brains using a magnetic capture DNA extraction and real-time PCR assay. RESULTS: Antibodies against T. gondii and DNA were detected in 36% and 27% of foxes, respectively. Detection of antibodies was higher in older (64%) compared to younger foxes (22%). More males (36%) than females (31%) were positive for antibodies to T. gondii. Tissue prevalence in foxes from western Nunavik (51%) was higher than in eastern Nunavik (19%). At the Canadian scale, T. gondii exposure was lower in western Inuit regions (13%) compared to eastern Inuit regions (39%), possibly because of regional differences in fox diet and/or environment. Exposure to T. gondii decreased at higher latitude and in foxes having moderate to little fat. Higher mean infection intensity was observed in Arctic foxes compared to red foxes. Fox and human seroprevalence showed similar trends across Inuit regions of Canada, but were less correlated in the eastern sub-Arctic, which may reflect regional differences in human dietary preferences. CONCLUSIONS: Our study sheds new light on the current status of T. gondii in foxes in northern Canada and shows that foxes serve as a good sentinel species for environmental circulation and, in some regions, human exposure to this parasite in the Arctic.


Assuntos
Toxoplasma , Toxoplasmose Animal , Idoso , Animais , Anticorpos Antiprotozoários , Canadá/epidemiologia , Ecossistema , Feminino , Raposas , Humanos , Masculino , Espécies Sentinelas , Estudos Soroepidemiológicos , Toxoplasma/genética , Toxoplasmose Animal/parasitologia
9.
Sci Rep ; 11(1): 3031, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542391

RESUMO

Ecosystem engineers modify habitats through processes other than trophic interactions, such as by regulating soil nutrients, and can influence resource availability and quality for other organisms. Predator-mediated elemental cycling may be especially important in determining plant diversity and growth in ecosystems where soil fertility and primary productivity are low. Red foxes (Vulpes vulpes L.), top predators in the Subarctic, could engineer local ecosystems through denning, which could create biogeochemical hotspots of nutrients due to continual input of feces, urine and prey remains. We examined soil and vegetation characteristics on red fox dens and paired control sites in woodland habitats near the Arctic treeline in Manitoba, Canada. The organic soil layer on den sites had 81% more inorganic nitrogen and 250% more extractable phosphorus than in control areas. Denning also increased soil respiration and pH in the organic layer, suggesting improved soil quality and nutrient availability for plants. By enriching nutrients and disturbing soils through digging, den sites had a higher plant species ß-diversity and a greater cover of erect woody shrubs (Salix spp.), grasses (Leymus mollis (Trinius) Pilger) and weedy ephemerals compared to control sites, resulting in a regional increase in plant species richness. Our research highlights the importance of considering impacts of predators other than through their consumption of prey, and provides insight into the role of red foxes in modifying plant diversity and productivity in the Subarctic.

10.
Ambio ; 49(3): 786-800, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31332767

RESUMO

Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.


Assuntos
Arvicolinae , Ecossistema , Animais , Regiões Árticas , Canadá , Dinâmica Populacional , Federação Russa
12.
PLoS One ; 13(7): e0199713, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975726

RESUMO

Estimates of animal diets and trophic structure using stable isotope analysis are strongly affected by diet-tissue discrimination and tissue turnover rates, yet these factors are often unknown for consumers because they must be measured using controlled-feeding studies. Furthermore, these parameters may be influenced by diet quality, growth, and other factors. We measured the effect of dietary protein content on diet-tissue discrimination and tissue turnover in three freshwater snail species. We fed lettuce to individually housed snails (n = 450 per species) for ten weeks, then half were switched to a high-protein diet. Isotopic values of muscle and gonad tissue were assessed at 48 and 80 days post-diet change. Snail discrimination factors varied by diet (low-protein > high-protein) and usually differed among species for both N and C, although species had similar carbon discrimination when fed the low-protein diet. Carbon turnover rates were similar among species for a given tissue type, but nitrogen turnover varied more among species. In addition, diet affected growth of species differently; some species grew larger on high-protein (H. trivolvis) while others grew larger on low-protein diet (Lymnaea spp.). These differences among species in growth influenced turnover rates, which were faster in the species with the highest growth rate following the diet switch from low to high-protein. Thus, growth is one of the main processes that affects tissue turnover, but growth and feeding preference did not affect diet-tissue discrimination, which was greater on low-protein than high-protein diets for all species regardless of growth performance. These results suggest that diet might influence two key parameters of stable isotope analysis differently.


Assuntos
Isótopos de Carbono/análise , Dieta , Comportamento Alimentar/fisiologia , Gônadas/metabolismo , Lymnaea/metabolismo , Músculo Esquelético/metabolismo , Isótopos de Nitrogênio/análise , Animais , Água Doce , Lymnaea/crescimento & desenvolvimento , Especificidade de Órgãos
13.
Ecology ; 88(4): 1053-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17536720

RESUMO

Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.


Assuntos
Ecossistema , Comportamento de Nidação/fisiologia , Desenvolvimento Vegetal , Dióxido de Silício/análise , Tartarugas/fisiologia , Animais , Conservação dos Recursos Naturais , Feminino , Isótopos de Nitrogênio/análise , Oviposição/fisiologia
14.
Ecology ; 88(11): 2736-43, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18051641

RESUMO

Geographical gradients in the stability of cyclic populations of herbivores and their predators may relate to the degree of specialization of predators. However, such changes are usually associated with transition from specialist to generalist predator species, rather than from geographical variation in dietary breadth of specialist predators. Canada lynx (Lynx canadensis) and snowshoe hare (Lepus americanus) populations undergo cyclic fluctuations in northern parts of their range, but cycles are either greatly attenuated or lost altogether in the southern boreal forest where prey diversity is higher. We tested the influence of prey specialization on population cycles by measuring the stable carbon and nitrogen isotope ratios in lynx and their prey, estimating the contribution of hares to lynx diet across their range, and correlating this degree of specialization to the strength of their population cycles. Hares dominated the lynx diet across their range, but specialization on hares decreased in southern and western populations. The degree of specialization correlated with cyclic signal strength indicated by spectral analysis of lynx harvest data, but overall variability of lynx harvest (the standard deviation of natural-log-transformed harvest numbers) did not change significantly with dietary specialization. Thus, as alternative prey became more important in the lynx diet, the fluctuations became decoupled from a regular cycle but did not become less variable. Our results support the hypothesis that alternative prey decrease population cycle regularity but emphasize that such changes may be driven by dietary shifts among dominant specialist predators rather than exclusively through changes in the predator community.


Assuntos
Dieta , Ecossistema , Lebres/fisiologia , Lynx/fisiologia , Comportamento Predatório/fisiologia , Animais , Biodiversidade , Canadá , Demografia , Feminino , Abastecimento de Alimentos , Masculino , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie
15.
Methods Mol Biol ; 1609: 9-24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28660569

RESUMO

Lipid extraction is an important component of many ecological and ecotoxicological measurements. For instance, percent lipid is often used as a measure of body condition, under the assumption that those individuals with higher lipid reserves are healthier. Likewise, lipids are depleted in 13C compared with protein, and it is consequently a routine to remove lipids prior to measuring carbon isotopes in ecological studies so that variation in lipid content does not obscure variation in diet. We provide detailed methods for two different protocols for lipid extraction: Soxhlet apparatus and manual distillation. We also provide methods for polar and nonpolar solvents. Neutral (nonpolar) solvents remove some lipids but few non-lipid compounds, whereas polar solvents remove most lipids but also many non-lipid compounds. We discuss each of the methods and provide guidelines for best practices. We recommend that, for stable isotope analysis, researchers test for a relationship between the change in carbon stable isotope ratio and the amount of lipid extracted to see if the degree of extraction has an impact on isotope ratios. Stable isotope analysis is widely used by ecologists, and we provide a detailed methodology that minimizes known biases.


Assuntos
Fracionamento Químico , Lipídeos/análise , Lipídeos/química , Fracionamento Químico/métodos
17.
Sci Rep ; 6: 24020, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045973

RESUMO

Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.


Assuntos
Raposas , Plantas , Solo/química , Tundra , Animais , Biodiversidade , Biomassa , Canadá , Nitrogênio/química , Fósforo/química , Poaceae , Dinâmica Populacional , Comportamento Predatório , Estações do Ano
18.
Ecol Evol ; 6(17): 6366-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27648249

RESUMO

Population dynamics of specialist carnivores are closely linked to prey availability, but the extent of variability in diet breadth of individual carnivores relative to natural variability in the abundance of their primary prey is not well understood. Canada lynx (Lynx canadensis) specialize on snowshoe hares (Lepus americanus) and exhibit cyclic fluctuations in abundance that lag 1-2 years behind those of snowshoe hares. Declining hare densities spur demographic changes in lynx, but it is unclear whether a corresponding increase in diet breadth occurs: (1) broadly across a lynx population; (2) only among individuals who are able to effectively switch to alternative prey; or (3) only among individuals who cannot capture sufficient primary prey. We measured stable isotope ratios of lynx muscle tissue spanning a cyclic increase and decline in hare density (1998-2001) in Fort Providence, NT, Canada. We found that lynx cohorts responded differently to hare population change, with yearling animals having broader diets at low hare densities, while adults and dependent juveniles maintained a constant diet through the initial decline in hare density. This result was consistent irrespective of lynx sex and indicates that yearling lynx likely are forced to adopt a broader diet when primary prey densities decline. Our results imply that select cohorts of specialist carnivores can exhibit high dietary plasticity in response to changes in primary prey abundance, prompting the need to determine whether increased diet breadth in young lynx is a successful strategy for surviving through periods of snowshoe hare scarcity. In this way, cohort-specific niche expansion could strongly affect the dynamics of organisms exhibiting population cycles.

19.
J Anim Ecol ; 72(4): 668-676, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30893960

RESUMO

Terrestrial predators in coastal areas are often subsidized by marine foods. In order to determine the potential impact on terrestrial prey, the numerical response of predators to each food source must be determined. In winter, arctic foxes (Alopex lagopus) may forage on the frozen Arctic ocean and scavenge carcasses of seals killed by polar bears (Ursus maritimus), but the importance of this food source and its effect on the population cycles of arctic foxes and lemmings (their primary prey) are unclear. I estimated the marine component of the late winter diet of arctic foxes near Churchill, Manitoba, using stable-carbon isotope analysis, and compared these estimates to abundance of arctic foxes and collared lemmings (Dicrostonyx richardsoni). From 1994 to 1997, fox density varied with lemming abundance, but following a decline, fox abundance began increasing before lemmings. During this increase marine foods were consumed more than in other years, with over two-thirds of food intake from marine sources. Arctic and red fox (Vulpes vulpes) harvests in the 1980s to 1990s were correlated with published estimates of polar bear body mass, which varies with seal productivity. However, this relationship disappeared during high lemming years. Thus, variation in marine productivity affects arctic fox abundance, especially when their primary prey are scarce, and this numerical response of arctic foxes to marine resources and lemmings suggests that increased predation by arctic foxes subsidized by seal carrion may delay the recovery of low lemming populations.

20.
PLoS One ; 7(9): e45335, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028943

RESUMO

In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways and associated non-breeding foraging grounds: (1) a seasonal continental shelf-constrained migratory pattern along the northeast U.S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent to the breeding area. Isotopic variability in both δ(13)C and δ(15)N among individuals allowed identification of three distinct foraging aggregations. We used discriminant function analysis to examine how well δ(13)C and δ(15)N predict female post-nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the continental shelf of the Mid- and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more representative at the population level.


Assuntos
Migração Animal/fisiologia , Isótopos , Telemetria/métodos , Animais , Isótopos de Carbono , Comportamento Alimentar/fisiologia , Feminino , Isótopos de Nitrogênio , Tartarugas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa