Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
BMC Genomics ; 23(1): 223, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313810

RESUMO

BACKGROUND: Musaceae is an economically important family consisting of 70-80 species. Elucidation of the interspecific relationships of this family is essential for a more efficient conservation and utilization of genetic resources for banana improvement. However, the scarcity of herbarium specimens and quality molecular markers have limited our understanding of the phylogenetic relationships in wild species of Musaceae. Aiming at improving the phylogenetic resolution of Musaceae, we analyzed a comprehensive set of 49 plastomes for 48 species/subspecies representing all three genera of this family. RESULTS: Musaceae plastomes have a relatively well-conserved genomic size and gene content, with a full length ranging from 166,782 bp to 172,514 bp. Variations in the IR borders were found to show phylogenetic signals to a certain extent in Musa. Codon usage bias analysis showed different preferences for the same codon between species and three genera and a common preference for A/T-ending codons. Among the two genes detected under positive selection (dN/dS > 1), ycf2 was indicated under an intensive positive selection. The divergent hotspot analysis allowed the identification of four regions (ndhF-trnL, ndhF, matK-rps16, and accD) as specific DNA barcodes for Musaceae species. Bayesian and maximum likelihood phylogenetic analyses using full plastome resulted in nearly identical tree topologies with highly supported relationships between species. The monospecies genus Musella is sister to Ensete, and the genus Musa was divided into two large clades, which corresponded well to the basic number of n = x = 11 and n = x =10/9/7, respectively. Four subclades were divided within the genus Musa. A dating analysis covering the whole Zingiberales indicated that the divergence of Musaceae family originated in the Palaeocene (59.19 Ma), and the genus Musa diverged into two clades in the Eocene (50.70 Ma) and then started to diversify from the late Oligocene (29.92 Ma) to the late Miocene. Two lineages (Rhodochlamys and Australimusa) radiated recently in the Pliocene /Pleistocene periods. CONCLUSIONS: The plastome sequences performed well in resolving the phylogenetic relationships of Musaceae and generated new insights into its evolution. Plastome sequences provided valuable resources for population genetics and phylogenetics at lower taxon.


Assuntos
Magnoliopsida , Musa , Musaceae , Teorema de Bayes , Musa/genética , Musaceae/genética , Filogenia
2.
Bioinformatics ; 37(23): 4556-4558, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34601567

RESUMO

MOTIVATION: Pangenomics evolved since its first applications on bacteria, extending from the study of genes for a given population to the study of all of its sequences available. While multiple methods are being developed to construct pangenomes in eukaryotic species there is still a gap for efficient and user-friendly visualization tools. Emerging graph representations come with their own challenges, and linearity remains a suitable option for user-friendliness. RESULTS: We introduce Panache, a tool for the visualization and exploration of linear representations of gene-based and sequence-based pangenomes. It uses a layout similar to genome browsers to display presence absence variations and additional tracks along a linear axis with a pangenomics perspective. AVAILABILITY AND IMPLEMENTATION: Panache is available at github.com/SouthGreenPlatform/panache under the MIT License.


Assuntos
Genoma , Software , Navegador , Bactérias
3.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292971

RESUMO

GDSL-type esterase/lipase (GELP) enzymes have key functions in plants, such as developmental processes, anther and pollen development, and responses to biotic and abiotic stresses. Genes that encode GELP belong to a complex and large gene family, ranging from tens to more than hundreds of members per plant species. To facilitate functional transfer between them, we conducted a genome-wide classification of GELP in 46 plant species. First, we applied an iterative phylogenetic method using a selected set of representative angiosperm genomes (three monocots and five dicots) and identified 10 main clusters, subdivided into 44 orthogroups (OGs). An expert curation for gene structures, orthogroup composition, and functional annotation was made based on a literature review. Then, using the HMM profiles as seeds, we expanded the classification to 46 plant species. Our results revealed the variable evolutionary dynamics between OGs in which some expanded, mostly through tandem duplications, while others were maintained as single copies. Among these, dicot-specific clusters and specific amplifications in monocots and wheat were characterized. This approach, by combining manual curation and automatic identification, was effective in characterizing a large gene family, allowing the establishment of a classification framework for gene function transfer and a better understanding of the evolutionary history of GELP.


Assuntos
Esterases , Magnoliopsida , Esterases/genética , Filogenia , Lipase/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Genoma , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética
4.
Plant J ; 101(6): 1258-1268, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845400

RESUMO

Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large-scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics-based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on-going genomic and phenotypic studies will enhance 'omics-wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.


Assuntos
Produtos Agrícolas/metabolismo , Bases de Dados como Assunto , Metaboloma , Musa/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Tubérculos/metabolismo , Metabolômica/métodos , Melhoramento Vegetal/métodos
5.
Ann Bot ; 127(1): 7-20, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32104882

RESUMO

BACKGROUND AND AIMS: Bananas (Musa spp.) are a major staple food for hundreds of millions of people in developing countries. The cultivated varieties are seedless and parthenocarpic clones of which the ancestral origin remains to be clarified. The most important cultivars are triploids with an AAA, AAB or ABB genome constitution, with A and B genomes provided by M. acuminata and M. balbisiana, respectively. Previous studies suggested that inter-genome recombinations were relatively common in banana cultivars and that triploids were more likely to have passed through an intermediate hybrid. In this study, we investigated the chromosome structure within the ABB group, composed of starchy cooking bananas that play an important role in food security. METHODS: Using SNP markers called from RADSeq data, we studied the chromosome structure of 36 ABB genotypes spanning defined taxonomic subgroups. To complement our understanding, we searched for similar events within nine AB hybrid genotypes. KEY RESULTS: Recurrent homologous exchanges (HEs), i.e. chromatin exchanges between A and B subgenomes, were unravelled with at least nine founding events (HE patterns) at the origin of ABB bananas prior to clonal diversification. Two independent founding events were found for Pisang Awak genotypes. Two HE patterns, corresponding to genotypes Pelipita and Klue Teparod, show an over-representation of B genome contribution. Three HE patterns mainly found in Indian accessions shared some recombined regions and two additional patterns did not correspond to any known subgroups. CONCLUSIONS: The discovery of the nine founding events allowed an investigation of the possible routes that led to the creation of the different subgroups, which resulted in new hypotheses. Based on our observations, we suggest different routes that gave rise to the current diversity in the ABB cultivars, routes involving primary AB hybrids, routes leading to shared HEs and routes leading to a B excess ratio. Genetic fluxes took place between M. acuminata and M. balbisiana, particularly in India, where these unbalanced AB hybrids and ABB allotriploids originated, and where cultivated M. balbisiana are abundant. The result of this study clarifies the classification of ABB cultivars, possibly leading to the revision of the classification of this subgroup.


Assuntos
Musa , Genoma de Planta , Genótipo , Índia , Musa/genética , Recombinação Genética
6.
Mol Biol Evol ; 36(1): 97-111, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403808

RESUMO

Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as "AB," "AAB," or "ABB" based on morphological characters. We used NGS sequence data to characterize the A versus B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies.


Assuntos
Segregação de Cromossomos , Genoma de Planta , Variação Estrutural do Genoma , Musa/genética , Recombinação Genética , Cromossomos de Plantas , Ploidias
7.
Funct Integr Genomics ; 20(4): 551-562, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32064548

RESUMO

Tropical race 4 of Fusarium oxysporum f. sp. cubense (FocTR4) is seriously threatening the banana industry worldwide. Resistant genotypes are present in wild relatives of banana, but little is known about the genetic and molecular mechanisms driving resistance responses. In this work, through in-depth expression analysis, we compared the responses of the resistant wild relative Musa acuminata ssp. burmanicoides (WTB) with the susceptible banana cultivar "Brizilian" (CAV, as it belongs to the Cavendish subgroup) to FocTR4 infection. Our findings showed that 1196 defense-related genes in the resistant WTB were differentially expressed genes (DEGs); only 358 defense-related DEGs were detected in CAV. DEGs related to pattern recognition receptors (PRRs) and disease resistance (R genes) were found in both genotypes, indicating the onset of both basal and specific defenses to FocTR4. Genes associated with cell wall modification exhibited a more remarkable upregulation in WTB than in CAV and might be involved in resistance during penetration steps. Our data also suggested that the high resistance of WTB is quantitatively driven with larger numbers and higher expression levels of defense-related DEGs. Fine-tuning studies to understand the resistance responses of WTB at early stages should be conducted to better support banana breeding programs. Further investigations are also required to validate the role of key genes screened in this study.


Assuntos
Resistência à Doença , Fusarium/patogenicidade , Musa/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Musa/microbiologia , RNA-Seq , Regulação para Cima
8.
Bioinformatics ; 35(20): 4147-4155, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30903186

RESUMO

MOTIVATION: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. RESULTS: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases. AVAILABILITY AND IMPLEMENTATION: More information on BrAPI, including links to the specification, test suites, BrAPPs, and sample implementations is available at https://brapi.org/. The BrAPI specification and the developer tools are provided as free and open source.


Assuntos
Melhoramento Vegetal , Software , Interface Usuário-Computador , Genômica
9.
BMC Genomics ; 20(1): 244, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30917780

RESUMO

BACKGROUND: Bananas (Musa spp.) are an important crop worldwide. Most modern cultivars resulted from a complex polyploidization history that comprised three whole genome duplications (WGDs) shaping the haploid Musa genome, followed by inter- and intra-specific crosses between Musa acuminata and M. balbisiana (A and B genome, respectively). Unresolved hybridizations finally led to banana diversification into several autotriploid (AAA) and allotriploid cultivars (AAB and ABB). Using transcriptomic data, we investigated the impact of the genome structure on gene expression patterns in roots of 12 different triploid genotypes covering AAA, AAB and ABB subgenome constitutions. RESULTS: We demonstrate that (i) there are different genome structures, (ii) expression patterns go beyond the predicted genomic groups, and (iii) the proportion of the B genome influences the gene expression. The presence of the B genome is associated with a higher expression of genes involved in flavonoid biosynthesis, fatty acid metabolism, amino sugar and nucleotide sugar metabolism and oxidative phosphorylation. There are cultivar-specific chromosome regions with biased B:A gene expression ratios that demonstrate homoeologous exchanges (HE) between A and B sub-genomes. In two cultivars, aneuploidy was detected. We identified 3674 genes with a different expression level between allotriploid and autotriploid with ~ 57% having recently duplicated copies (paralogous). We propose a Paralog Inclusive Expression (PIE) analysis that appears to be suitable for genomes still in a downsizing and fractionation process following whole genome duplications. Our approach allows highlighting the genes with a maximum likelihood to affect the plant phenotype. CONCLUSIONS: This study on banana is a good case to investigate the effects of alloploidy in crops. We conclude that allopolyploidy triggered changes in the genome structure of a crop and it clearly influences the gene.


Assuntos
Perfilação da Expressão Gênica/métodos , Musa/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Funções Verossimilhança , Redes e Vias Metabólicas , Filogenia , Raízes de Plantas/genética , Poliploidia
10.
Ann Bot ; 124(2): 319-329, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31241133

RESUMO

BACKGROUND AND AIMS: Banana cultivars are derived from hybridizations involving Musa acuminata subspecies. The latter diverged following geographical isolation in distinct South-east Asian continental regions and islands. Observation of chromosome pairing irregularities in meiosis of hybrids between these subspecies suggested the presence of large chromosomal structural variations. The aim of this study was to characterize such rearrangements. METHODS: Marker (single nucleotide polymorphism) segregation in a self-progeny of the 'Calcutta 4' accession and mate-pair sequencing were used to search for chromosomal rearrangements in comparison with the M. acuminata ssp. malaccensis genome reference sequence. Signature segment junctions of the revealed chromosome structures were identified and searched in whole-genome sequencing data from 123 wild and cultivated Musa accessions. KEY RESULTS: Two large reciprocal translocations were characterized in the seedy banana M. acuminata ssp. burmannicoides 'Calcutta 4' accession. One consisted of an exchange of a 240 kb distal region of chromosome 2 with a 7.2 Mb distal region of chromosome 8. The other involved an exchange of a 20.8 Mb distal region of chromosome 1 with a 11.6 Mb distal region of chromosome 9. Both translocations were found only in wild accessions belonging to the burmannicoides/burmannica/siamea subspecies. Only two of the 87 cultivars analysed displayed the 2/8 translocation, while none displayed the 1/9 translocation. CONCLUSION: Two large reciprocal translocations were identified that probably originated in the burmannica genetic group. Accurate characterization of these translocations should enhance the use of this disease resistance-rich burmannica group in breeding programmes.


Assuntos
Musa , Resistência à Doença , Humanos , Hibridização Genética , Índia , Ilhas
11.
Mol Biol Evol ; 34(9): 2140-2152, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575404

RESUMO

Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars.


Assuntos
Musa/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Evolução Molecular , Ligação Genética/genética , Genoma de Planta/genética , Hibridização Genética/genética , Análise de Sequência de DNA/métodos , Translocação Genética/genética
13.
Nature ; 488(7410): 213-7, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22801500

RESUMO

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Musa/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Genótipo , Haploidia , Dados de Sequência Molecular , Musa/classificação , Filogenia
15.
Nucleic Acids Res ; 43(Database issue): D1028-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392413

RESUMO

The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager.


Assuntos
Coffea/genética , Bases de Dados de Ácidos Nucleicos , Genoma de Planta , Coffea/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Software , Sintenia
16.
BMC Genomics ; 17: 243, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26984673

RESUMO

BACKGROUND: Recent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata). RESULTS: We have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data. The pipeline comprises several semi-automated tools. However, unlike classical automated tools that are based on global parameters, the semi-automated tools proposed an expert mode for a user who can decide on suggested improvements through local compromises. The pipeline was used to improve the draft genome sequence of Musa acuminata. Genotyping by sequencing (GBS) of a segregating population and paired-end sequencing were used to detect and correct scaffold misassemblies. Long insert size paired-end reads identified scaffold junctions and fusions missed by automated assembly methods. GBS markers were used to anchor scaffolds to pseudo-molecules with a new bioinformatics approach that avoids the tedious step of marker ordering during genetic map construction. Furthermore, a genome map was constructed and used to assemble scaffolds into super scaffolds. Finally, a consensus gene annotation was projected on the new assembly from two pre-existing annotations. This approach reduced the total Musa scaffold number from 7513 to 1532 (i.e. by 80%), with an N50 that increased from 1.3 Mb (65 scaffolds) to 3.0 Mb (26 scaffolds). 89.5% of the assembly was anchored to the 11 Musa chromosomes compared to the previous 70%. Unknown sites (N) were reduced from 17.3 to 10.0%. CONCLUSION: The release of the Musa acuminata reference genome version 2 provides a platform for detailed analysis of banana genome variation, function and evolution. Bioinformatics tools developed in this work can be used to improve genome sequence assemblies in other species.


Assuntos
Biologia Computacional/métodos , Genoma de Planta , Musa/genética , Mapeamento de Sequências Contíguas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA
17.
Plant Mol Biol ; 85(1-2): 63-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24570169

RESUMO

Identifying the molecular mechanisms underlying tolerance to abiotic stresses is important in crop breeding. A comprehensive understanding of the gene families associated with drought tolerance is therefore highly relevant. NAC transcription factors form a large plant-specific gene family involved in the regulation of tissue development and responses to biotic and abiotic stresses. The main goal of this study was to set up a framework of orthologous groups determined by an expert sequence comparison of NAC genes from both monocots and dicots. In order to clarify the orthologous relationships among NAC genes of different species, we performed an in-depth comparative study of four divergent taxa, in dicots and monocots, whose genomes have already been completely sequenced: Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa. Due to independent evolution, NAC copy number is highly variable in these plant genomes. Based on an expert NAC sequence comparison, we propose forty orthologous groups of NAC sequences that were probably derived from an ancestor gene present in the most recent common ancestor of dicots and monocots. These orthologous groups provide a curated resource for large-scale protein sequence annotation of NAC transcription factors. The established orthology relationships also provide a useful reference for NAC function studies in newly sequenced genomes such as M. acuminata and other plant species.


Assuntos
Genoma de Planta , Musa/genética , Fatores de Transcrição/genética , Musa/classificação , Filogenia
18.
Database (Oxford) ; 20242024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776381

RESUMO

The Musa Germplasm Information System (MGIS) stands as a pivotal database for managing global banana genetic resources information. In our latest effort, we have expanded MGIS to incorporate in situ observations. We thus incorporated more than 3000 in situ observations from 133 countries primarily sourced from iNaturalist, GBIF, Flickr, Pl@ntNet, Google Street view and expert curation of the literature. This addition provides a more comprehensive and detailed view of banana diversity and its distribution. Additional graphical interfaces, supported by new Drupal modules, were developed, allowing users to compare banana accessions and explore them based on various filters including taxonomy and geographic location. The integrated maps present a unified view, showcasing both in situ observations and the collecting locations of accessions held in germplasm collections. This enhancement not only broadens the scope of MGIS but also promotes a collaborative and open approach in documenting banana diversity, to allow more effective conservation and use of banana germplasm. Furthermore, this work documents a citizen-science approach that could be relevant for other communities. Database URL: https://www.crop-diversity.org/mgis/musa-in-situ.


Assuntos
Musa , Musa/genética , Bases de Dados Genéticas , Ciência do Cidadão , Internet
19.
Bioinformatics ; 28(7): 1054-6, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22285827

RESUMO

SUMMARY: We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. AVAILABILITY: The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form CONTACT: valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Anotação de Sequência Molecular/métodos , Software , Genômica/métodos , Vocabulário Controlado
20.
Nucleic Acids Res ; 39(Database issue): D1095-102, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20864446

RESUMO

GreenPhylDB is a database designed for comparative and functional genomics based on complete genomes. Version 2 now contains sixteen full genomes of members of the plantae kingdom, ranging from algae to angiosperms, automatically clustered into gene families. Gene families are manually annotated and then analyzed phylogenetically in order to elucidate orthologous and paralogous relationships. The database offers various lists of gene families including plant, phylum and species specific gene families. For each gene cluster or gene family, easy access to gene composition, protein domains, publications, external links and orthologous gene predictions is provided. Web interfaces have been further developed to improve the navigation through information related to gene families. New analysis tools are also available, such as a gene family ontology browser that facilitates exploration. GreenPhylDB is a component of the South Green Bioinformatics Platform (http://southgreen.cirad.fr/) and is accessible at http://greenphyl.cirad.fr. It enables comparative genomics in a broad taxonomy context to enhance the understanding of evolutionary processes and thus tends to speed up gene discovery.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Genes de Plantas , Genômica , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa