Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(20): e2117440119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533277

RESUMO

Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.


Assuntos
Tubarões , Animais , Espécies em Perigo de Extinção , Plâncton , Navios
2.
Mol Ecol ; 23(10): 2590-601, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24750370

RESUMO

This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo-Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea-level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial-scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo-Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world's largest fish at multiple spatial scales.


Assuntos
Variação Genética , Genética Populacional , Tubarões/genética , Animais , Austrália , DNA Mitocondrial/genética , Haplótipos , Repetições de Microssatélites , Oceanos e Mares , Análise de Sequência de DNA
3.
Ecol Evol ; 11(9): 4920-4934, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976859

RESUMO

To gain insight into whale shark (Rhincodon typus) movement patterns in the Western Indian Ocean, we deployed eight pop-up satellite tags at an aggregation site in the Arta Bay region of the Gulf of Tadjoura, Djibouti in the winter months of 2012, 2016, and 2017. Tags revealed movements ranging from local-scale around the Djibouti aggregation site, regional movements along the coastline of Somaliland, movements north into the Red Sea, and a large-scale (>1,000 km) movement to the east coast of Somalia, outside of the Gulf of Aden. Vertical movement data revealed high occupation of the top ten meters of the water column, diel vertical movement patterns, and deep diving behavior. Long-distance movements recorded both here and in previous studies suggest that connectivity between the whale sharks tagged at the Djibouti aggregation and other documented aggregations in the region are likely within annual timeframes. In addition, wide-ranging movements through multiple nations, as well as the high use of surface waters recorded, likely exposes whale sharks in this region to several anthropogenic threats, including targeted and bycatch fisheries and ship-strikes. Area-based management approaches focusing on seasonal hotspots offer a way forward in the conservation of whale sharks in the Western Indian Ocean.

4.
Conserv Physiol ; 9(1): coaa120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33569175

RESUMO

Wound healing is important for marine taxa such as elasmobranchs, which can incur a range of natural and anthropogenic wounds throughout their life history. There is evidence that this group shows a high capacity for external wound healing. However, anthropogenic wounds may become more frequent due to increasing commercial and recreational marine activities. Whale sharks are particularly at risk of attaining injuries given their use of surface waters and wildlife tourism interest. There is limited understanding as to how whale sharks recover from injuries, and often insights are confined to singular opportunistic observations. The present study makes use of a unique and valuable photographic data source from two whale shark aggregation sites in the Indian Ocean. Successional injury-healing progression cases were reviewed to investigate the characteristics of injuries and quantify a coarse healing timeframe. Wounds were measured over time using an image standardization method. This work shows that by Day 25 major injury surface area decreased by an average of 56% and the most rapid healing case showed a surface area reduction of 50% in 4 days. All wounds reached a point of 90% surface area closure by Day 35. There were differences in healing rate based on wound type, with lacerations and abrasions taking 50 and 22 days to reach 90% healing, respectively. This study provides baseline information for wound healing in whale sharks and the methods proposed could act as a foundation for future research. Use of a detailed classification system, as presented here, may also assist in ocean scale injury comparisons between research groups and aid reliable descriptive data. Such findings can contribute to discussions regarding appropriate management in aggregation areas with an aim to reduce the likelihood of injuries, such as those resulting from vessel collisions, in these regions or during movements between coastal waters.

5.
R Soc Open Sci ; 3(11): 160455, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28018629

RESUMO

Genetic and modelling studies suggest that seasonal aggregations of whale sharks (Rhincodon typus) at coastal sites in the tropics may be linked by migration. Here, we used photo-identification (photo-ID) data collected by both citizen scientists and researchers to assess the connectedness of five whale shark aggregation sites across the entire Indian Ocean at timescales of up to a decade. We used the semi-automated program I3S (Individual Interactive Identification System) to compare photographs of the unique natural marking patterns of individual whale sharks collected from aggregations at Mozambique, the Seychelles, the Maldives, Christmas Island (Australia) and Ningaloo Reef (Australia). From a total of 6519 photos, we found no evidence of connectivity of whale shark aggregations at ocean-basin scales within the time frame of the study and evidence for only limited connectivity at regional (hundreds to thousands of kilometres) scales. A male whale shark photographed in January 2010 at Mozambique was resighted eight months later in the Seychelles and was the only one of 1724 individuals in the database to be photographed at more than one site. On average, 35% of individuals were resighted at the same site in more than one year. A Monte Carlo simulation study showed that the power of this photo-ID approach to document patterns of emigration and immigration was strongly dependent on both the number of individuals identified in aggregations and the size of resident populations.

6.
Biol Lett ; 4(4): 395-8, 2008 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-18511407

RESUMO

Despite being the second largest fish, basking sharks (Cetorhinus maximus) have been assumed to remain in discrete populations. Their known distribution encompasses temperate continental shelf areas, yet until now there has been no evidence for migration across oceans or between hemispheres. Here we present results on the tracks and behaviour of two basking sharks tagged off the British Isles, one of which released its tag off Newfoundland, Canada. During the shark's transit of the North Atlantic, she travelled a horizontal distance of 9589 km and reached a record depth of 1264 m. This result provides the first evidence for a link between European and American populations and indicates that basking sharks make use of deep-water habitats beyond the shelf edge.


Assuntos
Migração Animal , Mergulho , Tubarões/fisiologia , Animais , Oceano Atlântico , Feminino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa