Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microb Cell Fact ; 19(1): 176, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887610

RESUMO

Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).


Assuntos
Membrana Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Proteínas de Membrana/fisiologia , Organelas/fisiologia , Fosfolipídeos/fisiologia , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/ultraestrutura , Organelas/ultraestrutura , Conformação Proteica
2.
J Org Chem ; 85(10): 6509-6518, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32301615

RESUMO

Hydrophilic host-guest complexes, consisting of water-soluble azobenzene and α-, ß-, or γ-cyclodextrins, have been proposed as a model to study supramolecular photoresponsive systems in aqueous environments through a full spectrometric approach combined with a simulation and data fitting methodology. Various essential and complementary spectroscopic techniques have been used: circular dichroism to determine whether the complex is formed or not, NMR for the stoichiometry elucidation, and UV-visible spectrophotometry to obtain the association equilibrium constant of each complex and the quantum yield for each photochemical process. A step-by-step fitting procedure is presented, which enables the determination of all thermodynamic and photokinetic parameters. A sequential methodology is applied to dissipate all uncertainties on the variability of the results and to develop a relevant and reliable protocol applicable to other types of complexes. The proposed procedure has thus been shown to be very robust and largely applicable to other photoresponsive host-guest systems.

3.
Microb Cell Fact ; 18(1): 131, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400768

RESUMO

BACKGROUND: The overexpression and purification of membrane proteins is a bottleneck in biotechnology and structural biology. E. coli remains the host of choice for membrane protein production. To date, most of the efforts have focused on genetically tuning of expression systems and shaping membrane composition to improve membrane protein production remained largely unexplored. RESULTS: In E. coli C41(DE3) strain, we deleted two transporters involved in fatty acid metabolism (OmpF and AcrB), which are also recalcitrant contaminants crystallizing even at low concentration. Engineered expression hosts presented an enhanced fitness and improved folding of target membrane proteins, which correlated with an altered membrane fluidity. We demonstrated the scope of this approach by overproducing several membrane proteins (4 different ABC transporters, YidC and SecYEG). CONCLUSIONS: In summary, E. coli membrane engineering unprecedentedly increases the quality and yield of membrane protein preparations. This strategy opens a new field for membrane protein production, complementary to gene expression tuning.


Assuntos
Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Lipídeos/química , Proteínas de Membrana/biossíntese , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Engenharia Metabólica , Canais de Translocação SEC/química , Canais de Translocação SEC/genética
4.
Angew Chem Int Ed Engl ; 58(22): 7395-7399, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934157

RESUMO

Despite growing research efforts on the preparation of (bio)functional liposomes, synthetic capsules cannot reach the densities of protein loading and the control over peptide display that is achieved by natural vesicles. Herein, a microbial platform for high-yield production of lipidic nanovesicles with clickable thiol moieties in their outer corona is reported. These nanovesicles show low size dispersity, are decorated with a dense, perfectly oriented, and customizable corona of transmembrane polypeptides. Furthermore, this approach enables encapsulation of soluble proteins into the nanovesicles. Due to the mild preparation and loading conditions (absence of organic solvents, pH gradients, or detergents) and their straightforward surface functionalization, which takes advantage of the diversity of commercially available maleimide derivatives, bacteria-based proteoliposomes are an attractive eco-friendly alternative that can outperform currently used liposomes.


Assuntos
Trifosfato de Adenosina/metabolismo , Escherichia coli/metabolismo , Lipídeos/química , Nanopartículas/química , Proteolipídeos/química , ATPases Translocadoras de Prótons/metabolismo , Compostos de Sulfidrila/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo
5.
Phys Chem Chem Phys ; 19(21): 13622-13628, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28524194

RESUMO

Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.

6.
Macromol Rapid Commun ; 35(21): 1890-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25257542

RESUMO

The large and reversible photoinduced linear and circular birefringences in azo-compounds are at the basis of the interest in these materials, which are potentially useful for several applications. Since the onset of the linear and circular anisotropies relies on orientational processes, which typically occur on the molecular and supramolecular length scale, respectively, a circular birefringence at least one order of magnitude lower than the linear one is usually observed. Here, the synthesis and characterization of an amorphous polymer with a dimeric repeating unit containing a cyanoazobenzene and a cyanobiphenyl moiety are reported, in which identical optical linear and circular birefringences are induced for proper light dose and ellipticity. A pump-probe technique and an analytical method based on the Stokes-Mueller formalism are used to investigate the photoinduced effects and to evaluate the anisotropies. The peculiar photoresponse of the polymer makes it a good candidate for applications in smart functional devices.


Assuntos
Compostos Azo/química , Birrefringência , Processos Fotoquímicos/efeitos da radiação , Polímeros/química , Algoritmos , Azidas/síntese química , Azidas/química , Compostos Azo/síntese química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Polímeros/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Polymers (Basel) ; 11(5)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096554

RESUMO

This paper describes the synthesis, thermal characterization and optical properties of liquid crystalline homopolymers and block copolymers with a repeating unit consisting of two functional units, with at least one of them being an azobenzene. Films of these polymers have been irradiated with circularly polarized light at room temperature, evaluating the intensity of the photoinduced chiral signal and its temporal stability upon storage. The paper also explores two different strategies to restrict the relaxation of the photoinduced order. Firstly, block copolymers have been prepared to confine the photoaddressable segments into nanoscopic domains where relaxation should be restricted. Secondly, an alternative homopolymer has been synthesized where the repeating unit combines two chromophores that can be separately photoaddressed, an azobenzene unit to efficiently photoinduce chirality and a cinnamate to fix the chiral signal by photocrosslinking.

8.
J Phys Chem B ; 118(40): 11849-54, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25187982

RESUMO

Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa