Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 431(7008): 545-9, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15457254

RESUMO

Current approaches to reaction discovery focus on one particular transformation. Typically, researchers choose substrates based on their predicted ability to serve as precursors for the target structure, then evaluate reaction conditions for their ability to effect product formation. This approach is ideal for addressing specific reactivity problems, but its focused nature might leave many areas of chemical reactivity unexplored. Here we report a reaction discovery approach that uses DNA-templated organic synthesis and in vitro selection to simultaneously evaluate many combinations of different substrates for bond-forming reactions in a single solution. Watson-Crick base pairing controls the effective molarities of substrates tethered to DNA strands; bond-forming substrate combinations are then revealed using in vitro selection for bond formation, PCR amplification and DNA microarray analysis. Using this approach, we discovered an efficient and mild carbon-carbon bond-forming reaction that generates an enone from an alkyne and alkene using an inorganic palladium catalyst. Although this approach is restricted to conditions and catalysts that are at least partially compatible with DNA, we expect that its versatility and efficiency will enable the discovery of additional reactions between a wide range of substrates.


Assuntos
DNA/química , DNA/síntese química , Alcenos/química , Alcinos/química , Pareamento de Bases , Carbono/química , Catálise , Ciclização , Replicação do DNA , Estrutura Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Paládio/química , Reação em Cadeia da Polimerase , Especificidade por Substrato , Moldes Genéticos
2.
Curr Opin Chem Biol ; 11(3): 259-68, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17548235

RESUMO

Molecular evolution has been widely applied in the laboratory to generate novel biological macromolecules. The principles underlying evolution have more recently been used to address problems in the chemical sciences, including the discovery of functional synthetic small molecules, catalysts, materials and new chemical reactions. The application of these principles in dynamic combinatorial chemistry and in efforts involving small molecule-nucleic acid conjugates has facilitated the evaluation of large numbers of candidate structures or reactions for desired characteristics. These early efforts suggest the promise of pairing evolutionary approaches with synthetic chemistry.


Assuntos
Evolução Biológica , Técnicas de Química Combinatória , DNA/química , Moldes Genéticos
3.
J Am Chem Soc ; 129(48): 14933-8, 2007 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17994738

RESUMO

We have developed and applied an approach to reaction discovery that takes advantage of DNA encoding, DNA-programmed assembly of substrate pairs, in vitro selection, and PCR amplification, yet does not require reaction conditions that support DNA hybridization. This system allows the simultaneous evaluation of >200 potential bond-forming combinations of substrates in a single experiment and can be applied in a range of solvent and temperature conditions. In an initial application, we applied this system to explore Au(III)-mediated chemistry and uncovered a simple, mild method for the selective Markovnikov-type hydroarylation of vinyl arenes and trisubstituted olefins with indoles.


Assuntos
Sondas de DNA/química , DNA/química , Solventes/química , Estireno/química , Ácidos/química , Catálise , Indóis/química , Estrutura Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa