Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033149

RESUMO

Microalgae are microorganisms with the capacity to contribute to the sustainable and healthy food production, in addition to wastewater treatment. The subject of this work was to determine the potential of Scenedesmus obliquus microalga grown in brewery wastewater to act as a plant biostimulant. The germination index of watercress seeds, as well as the auxin-like activity in mung bean and cucumber, and in the cytokinin-like activity in cucumber bioassays were used to evaluate the biostimulant potential. Several biomass processes were studied, such as centrifugation, ultrasonication and enzymatic hydrolysis, as well as the final concentration of microalgal extracts to determine their influence in the biostimulant activity of the Scenedesmus biomass. The results showed an increase of 40% on the germination index when using the biomass at 0.1 g/L, without any pre-treatment. For auxin-like activity, the best results (up to 60% with respect to control) were obtained at 0.5 g/L of biomass extract, after a combination of cell disruption, enzymatic hydrolysis and centrifugation. For cytokinin-like activity, the best results (up to 187.5% with respect to control) were achieved without cell disruption, after enzymatic hydrolysis and centrifugation at a biomass extract concentration of 2 g/L.


Assuntos
Extratos Celulares/farmacologia , Cucumis sativus/crescimento & desenvolvimento , Nasturtium/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Scenedesmus/metabolismo , Vigna/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Microalgas/metabolismo , Águas Residuárias/análise
2.
Biology (Basel) ; 11(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36101464

RESUMO

The aim of the present study was to assess the potential of producing four microalgal strains using secondary-treated urban wastewater supplemented with centrate, and to evaluate the biostimulant effects of several microalgal extracts obtained using water and sonication. Four strains were studied: Chlorella vulgaris UAL-1, Chlorella sp. UAL-2, Chlorella vulgaris UAL-3, and Chlamydopodium fusiforme UAL-4. The highest biomass productivity was found for C. fusiforme, with a value of 0.38 ± 0.01 g·L-1·day-1. C. vulgaris UAL-1 achieved a biomass productivity of 0.31 ± 0.03 g·L-1·day-1 (the highest for the Chlorella genus), while the N-NH4+, N-NO3-, and P-PO43- removal capacities of this strain were 51.9 ± 2.4, 0.8 ± 0.1, and 5.7 ± 0.3 mg·L-1·day-1, respectively. C. vulgaris UAL-1 showed the greatest potential for use as a biostimulant-when used at a concentration of 0.1 g·L-1, it increased the germination index of watercress seeds by 3.5%. At concentrations of 0.5 and 2.0 g·L-1, the biomass from this microalga promoted adventitious root formation in soybean seeds by 220% and 493%, respectively. The cucumber expansion test suggested a cytokinin-like effect from C. vulgaris UAL-1; it was also the only strain that promoted the formation of chlorophylls in wheat leaves. Overall, the results of the present study suggest the potential of producing C. vulgaris UAL-1 using centrate and wastewater as well as the potential utilisation of its biomass to develop high-value biostimulants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa