Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891873

RESUMO

Gas-loaded nanocarriers (G-LN) show promise in improving heart transplantation (HTx) outcomes. Given their success in reducing cell death during normothermic hypoxia/reoxygenation (H/R) in vitro, we tested their integration into cardioplegic solutions and static cold storage (SCS) during simulated HTx. Wistar rat hearts underwent four hours of SCS with four G-LN variants: O2- or N2-cyclic-nigerosyl-nigerose-nanomonomers (CNN), and O2- or N2-cyclic-nigerosyl-nigerose-nanosponges (CNN-NS). We monitored physiological-hemodynamic parameters and molecular markers during reperfusion to assess cell damage/protection. Hearts treated with nanomonomers (N2-CNN or O2-CNN) showed improvements in left ventricular developed pressure (LVDP) and a trend towards faster recovery of the rate pressure product (RPP) compared to controls. However, nanosponges (N2-CNN-NS or O2-CNN-NS) did not show similar improvements. None of the groups exhibited an increase in diastolic left ventricular pressure (contracture index) during reperfusion. Redox markers and apoptosis/autophagy pathways indicated an increase in Beclin 1 for O2-CNN and in p22phox for N2-CNN, suggesting alterations in autophagy and the redox environment during late reperfusion, which might explain the gradual decline in heart performance. The study highlights the potential of nanomonomers to improve early cardiac performance and mitigate cold/H/R-induced stunning in HTx. These early improvements suggest a promising avenue for increasing HTx success. Nevertheless, further research and optimization are needed before clinical application.


Assuntos
Transplante de Coração , Ratos Wistar , Animais , Transplante de Coração/métodos , Ratos , Masculino , Nanopartículas/química , Oxigênio/metabolismo , Hipóxia/metabolismo , Hemodinâmica , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Gases/química
2.
Vascul Pharmacol ; 156: 107397, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897555

RESUMO

BACKGROUND: Several factors contribute to ischemia/reperfusion injury (IRI), including activation of the NLRP3 inflammasome and its byproducts, such as interleukin-1ß (IL-1ß) and caspase-1. However, NLRP3 may paradoxically exhibit cardioprotective properties. This study aimed to assess the protective effects of the novel NLRP3 inhibitor, INF195, both in vitro and ex vivo. METHODS: To investigate the relationship between NLRP3 and myocardial IRI, we synthetized a series of novel NLRP3 inhibitors, and investigated their putative binding mode via docking studies. Through in vitro studies we identified INF195 as optimal for NLRP3 inhibition. We measured infarct-size in isolated mouse hearts subjected to 30-min global ischemia/one-hour reperfusion in the presence of three different doses of INF195 (5, 10, or 20-µM). We analyzed caspase-1 and IL-1ß concentration in cardiac tissue homogenates by ELISA. Statistical significance was determined using one-way ANOVA followed by Tukey's test. RESULTS AND CONCLUSION: INF195 reduces NLRP3-induced pyroptosis in human macrophages. Heart pre-treatment with 5 and 10-µM INF195 significantly reduces both infarct size and IL-1ß levels. Data suggest that intracardiac NLRP3 activation contributes to IRI and that low doses of INF195 exert cardioprotective effects by reducing infarct size. However, at 20-µM, INF195 efficacy declines, leading to a lack of cardioprotection. Research is required to determine if high doses of INF195 have off-target effects or dual roles, potentially eliminating both harmful and cardioprotective functions of NLRP3. Our findings highlight the potential of a new chemical scaffold, amenable to further optimization, to provide NLRP3 inhibition and cardioprotection in the ischemia/reperfusion setting.

3.
Biology (Basel) ; 12(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36829584

RESUMO

Despite the development of cutting-edge treatments, coronary artery disease (CAD) morbidity and mortality rates remain present at high levels. Therefore, new cardioprotective approaches are crucial to improve the health of patients. To date, experimental investigations of acute ischemia-reperfusion injury (IRI) have generally demonstrated the efficacy of local ischemic preconditioning and postconditioning cardioprotection techniques as well as of remote conditioning. However, application in clinical settings is still highly controversial and debated. Currently, remote ischemic conditioning (RIC) seems to be the most promising method for heart repair. Protective factors are released into the bloodstream, and protection can be transferred within and across species. For a long time, the cross-function and cross-transmission mechanisms of cardioprotection were largely unknown. Recently, it has been shown that small, anuclear, bilayered lipid membrane particles, known as extracellular vesicles (EVs), are the drivers of signal transduction in cardiac IRI and RIC. EVs are related to the pathophysiological processes of cardiovascular diseases (CVDs), according to compelling evidence. In this review, we will first review the current state of knowledge on myocardial IRI and cardioprotective strategies explored over the past 37 years. Second, we will briefly discuss the role of EVs in CVD and the most recent improvements on EVs as prognostic biomarkers, diagnostic, and therapeutic agents. We will discuss how EVs can be used as a new drug delivery mechanism and how they can be employed in cardiac treatment, also from a perspective of overcoming the impasse that results from neglecting confounding factors.

4.
Nutrients ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068732

RESUMO

Diets with an elevated content of fat, sucrose, or fructose are recognized models of diet-induced metabolic alterations, since they induce metabolic derangements, oxidative stress, and chronic low-grade inflammation associated with local and systemic accumulation of advanced glycation end-products (AGEs). This study used four-week-old C57BL/6 male mice, randomly assigned to three experimental dietary regimens: standard diet (SD), high-fat high-sucrose diet (HFHS), or high fructose diet (HFr), administered for 12 weeks. Plasma, heart, and tibialis anterior (TA) skeletal muscle were assayed for markers of metabolic conditions, inflammation, presence of AGEs, and mitochondrial involvement. The HFHS diet induced a tissue-specific differential response featuring (1) a remarkable adaptation of the heart to HFHS-induced heavy oxidative stress, demonstrated by an increased presence of AGEs and reduced mitochondrial biogenesis, and efficaciously counteracted by a conspicuous increase in mitochondrial fission and PRXIII expression; (2) the absence of TA adaptation to HFHS, revealed by a heavy reduction in mitochondrial biogenesis, not counteracted by an increase in fission and PRXIII expression. HFr-induced mild oxidative stress elicited tissue-specific responses, featuring (1) a decrease in mitochondrial biogenesis in the heart, likely counteracted by a tendency for increased fission and (2) a mild reduction in mitochondrial biogenesis in TA, likely counteracted by a tendency for increased fusion, showing the adaptability of both tissues to the diet.


Assuntos
Frutose , Sacarose , Camundongos , Masculino , Animais , Sacarose/farmacologia , Frutose/metabolismo , Reação de Maillard , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa