Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 182(2): 497-514.e22, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579974

RESUMO

To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Genômica/métodos , Neoplasias Cutâneas/metabolismo , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , RNA-Seq , Análise de Célula Única , Pele/metabolismo , Neoplasias Cutâneas/patologia , Transcriptoma , Transplante Heterólogo
2.
Cell ; 176(1-2): 361-376.e17, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30580963

RESUMO

Here, we present Perturb-ATAC, a method that combines multiplexed CRISPR interference or knockout with genome-wide chromatin accessibility profiling in single cells based on the simultaneous detection of CRISPR guide RNAs and open chromatin sites by assay of transposase-accessible chromatin with sequencing (ATAC-seq). We applied Perturb-ATAC to transcription factors (TFs), chromatin-modifying factors, and noncoding RNAs (ncRNAs) in ∼4,300 single cells, encompassing more than 63 genotype-phenotype relationships. Perturb-ATAC in human B lymphocytes uncovered regulators of chromatin accessibility, TF occupancy, and nucleosome positioning and identified a hierarchy of TFs that govern B cell state, variation, and disease-associated cis-regulatory elements. Perturb-ATAC in primary human epidermal cells revealed three sequential modules of cis-elements that specify keratinocyte fate. Combinatorial deletion of all pairs of these TFs uncovered their epistatic relationships and highlighted genomic co-localization as a basis for synergistic interactions. Thus, Perturb-ATAC is a powerful strategy to dissect gene regulatory networks in development and disease.


Assuntos
Epigenômica/métodos , Redes Reguladoras de Genes/genética , Análise de Célula Única/métodos , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Redes Reguladoras de Genes/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo
4.
Nat Methods ; 16(6): 489-492, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133759

RESUMO

Modular domains of long non-coding RNAs can serve as scaffolds to bring distant regions of the linear genome into spatial proximity. Here, we present HiChIRP, a method leveraging bio-orthogonal chemistry and optimized chromosome conformation capture conditions, which enables interrogation of chromatin architecture focused around a specific RNA of interest down to approximately ten copies per cell. HiChIRP of three nuclear RNAs reveals insights into promoter interactions (7SK), telomere biology (telomerase RNA component) and inflammatory gene regulation (lincRNA-EPS).


Assuntos
Cromatina/química , Cromatina/genética , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , RNA/química , Telomerase/química , Animais , Células Cultivadas , Cromossomos , Células-Tronco Embrionárias/citologia , Genoma , Camundongos , Regiões Promotoras Genéticas , RNA/genética , Telomerase/genética
5.
Nat Methods ; 14(10): 959-962, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846090

RESUMO

We present Omni-ATAC, an improved ATAC-seq protocol for chromatin accessibility profiling that works across multiple applications with substantial improvement of signal-to-background ratio and information content. The Omni-ATAC protocol generates chromatin accessibility profiles from archival frozen tissue samples and 50-µm sections, revealing the activities of disease-associated DNA elements in distinct human brain structures. The Omni-ATAC protocol enables the interrogation of personal regulomes in tissue context and translational studies.


Assuntos
DNA/genética , Congelamento , Genoma , Manejo de Espécimes/métodos , Animais , Encéfalo , Linhagem Celular , Eritrócitos , Regulação Enzimológica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Queratinócitos , Camundongos , Replicação de Sequência Autossustentável , Neoplasias da Glândula Tireoide , Transposases/metabolismo
6.
Nat Methods ; 13(11): 919-922, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27643841

RESUMO

Genome conformation is central to gene control but challenging to interrogate. Here we present HiChIP, a protein-centric chromatin conformation method. HiChIP improves the yield of conformation-informative reads by over 10-fold and lowers the input requirement over 100-fold relative to that of ChIA-PET. HiChIP of cohesin reveals multiscale genome architecture with greater signal-to-background ratios than those of in situ Hi-C.


Assuntos
Proteínas de Ciclo Celular/química , Imunoprecipitação da Cromatina/métodos , Cromatina/química , Proteínas Cromossômicas não Histona/química , DNA/química , Genômica/métodos , Animais , Linfócitos B/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Mapeamento Cromossômico , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coesinas
7.
Nucleic Acids Res ; 39(3): 1131-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20843779

RESUMO

We have generated a series of variable-strength, constitutive, bacterial promoters that act predictably in different sequence contexts, span two orders of magnitude in strength and contain convenient sites for cloning and the introduction of downstream open-reading frames. Importantly, their design insulates these promoters from the stimulatory or repressive effects of many 5'- or 3'-sequence elements. We show that different promoters from our library produce constant relative levels of two different proteins in multiple genetic contexts. This set of promoters should be a useful resource for the synthetic-biology community.


Assuntos
Bactérias/genética , Elementos Isolantes , Regiões Promotoras Genéticas , Biblioteca Gênica , Genes Reporter , Engenharia Genética , Loci Gênicos , Fases de Leitura Aberta , Transcrição Gênica
8.
J Invest Dermatol ; 143(11): 2177-2192.e13, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37142187

RESUMO

Epidermal homeostasis is governed by a balance between keratinocyte proliferation and differentiation with contributions from cell-cell interactions, but conserved or divergent mechanisms governing this equilibrium across species and how an imbalance contributes to skin disease are largely undefined. To address these questions, human skin single-cell RNA sequencing and spatial transcriptomics data were integrated and compared with mouse skin data. Human skin cell-type annotation was improved using matched spatial transcriptomics data, highlighting the importance of spatial context in cell-type identity, and spatial transcriptomics refined cellular communication inference. In cross-species analyses, we identified a human spinous keratinocyte subpopulation that exhibited proliferative capacity and a heavy metal processing signature, which was absent in mouse and may account for species differences in epidermal thickness. This human subpopulation was expanded in psoriasis and zinc-deficiency dermatitis, attesting to disease relevance and suggesting a paradigm of subpopulation dysfunction as a hallmark of the disease. To assess additional potential subpopulation drivers of skin diseases, we performed cell-of-origin enrichment analysis within genodermatoses, nominating pathogenic cell subpopulations and their communication pathways, which highlighted multiple potential therapeutic targets. This integrated dataset is encompassed in a publicly available web resource to aid mechanistic and translational studies of normal and diseased skin.


Assuntos
Dermatopatias , Transcriptoma , Humanos , Animais , Camundongos , Pele , Queratinócitos/metabolismo , Epiderme/patologia , Dermatopatias/patologia , Comunicação Celular
9.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077056

RESUMO

Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.

10.
Nat Genet ; 53(11): 1564-1576, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34650237

RESUMO

Transcription factors bind DNA sequence motif vocabularies in cis-regulatory elements (CREs) to modulate chromatin state and gene expression during cell state transitions. A quantitative understanding of how motif lexicons influence dynamic regulatory activity has been elusive due to the combinatorial nature of the cis-regulatory code. To address this, we undertook multiomic data profiling of chromatin and expression dynamics across epidermal differentiation to identify 40,103 dynamic CREs associated with 3,609 dynamically expressed genes, then applied an interpretable deep-learning framework to model the cis-regulatory logic of chromatin accessibility. This analysis framework identified cooperative DNA sequence rules in dynamic CREs regulating synchronous gene modules with diverse roles in skin differentiation. Massively parallel reporter assay analysis validated temporal dynamics and cooperative cis-regulatory logic. Variants linked to human polygenic skin disease were enriched in these time-dependent combinatorial motif rules. This integrative approach shows the combinatorial cis-regulatory lexicon of epidermal differentiation and represents a general framework for deciphering the organizational principles of the cis-regulatory code of dynamic gene regulation.


Assuntos
Epiderme/fisiologia , Modelos Genéticos , Elementos Reguladores de Transcrição , Diferenciação Celular/genética , Cromatina/genética , Epigenoma , Regulação da Expressão Gênica , Genes Reporter , Estudo de Associação Genômica Ampla , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Redes Neurais de Computação , Dermatopatias/genética , Fatores de Transcrição/genética
11.
Nat Genet ; 50(12): 1658-1665, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397335

RESUMO

Human embryonic stem cell (hESC) differentiation promises advances in regenerative medicine1-3, yet conversion of hESCs into transplantable cells or tissues remains poorly understood. Using our keratinocyte differentiation system, we employ a multi-dimensional genomics approach to interrogate the contributions of inductive morphogens retinoic acid and bone morphogenetic protein 4 (BMP4) and the epidermal master regulator p63 (encoded by TP63)4,5 during surface ectoderm commitment. In contrast to other master regulators6-9, p63 effects major transcriptional changes only after morphogens alter chromatin accessibility, establishing an epigenetic landscape for p63 to modify. p63 distally closes chromatin accessibility and promotes accumulation of H3K27me3 (trimethylated histone H3 lysine 27). Cohesin HiChIP10 visualizations of chromosome conformation show that p63 and the morphogens contribute to dynamic long-range chromatin interactions, as illustrated by TFAP2C regulation11. Our study demonstrates the unexpected dependency of p63 on morphogenetic signaling and provides novel insights into how a master regulator can specify diverse transcriptional programs based on the chromatin landscape induced by exposure to specific morphogens.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Queratinócitos/fisiologia , Fatores de Transcrição/fisiologia , Tretinoína/farmacologia , Proteínas Supressoras de Tumor/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Epiderme/efeitos dos fármacos , Epiderme/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
Nat Med ; 24(5): 580-590, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29686426

RESUMO

T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy.


Assuntos
Cromatina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transposases/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Transformada , Células Clonais , Epigenômica , Humanos , Imunidade , Células Jurkat , Leucemia/imunologia , Leucemia/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Célula Única
13.
Dev Cell ; 43(2): 227-239.e5, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28943242

RESUMO

Somatic progenitors sustain tissue self-renewal while suppressing premature differentiation. Protein arginine methyltransferases (PRMTs) affect many processes; however, their role in progenitor function is incompletely understood. PRMT1 was found to be the most highly expressed PRMT in epidermal progenitors and the most downregulated PRMT during differentiation. In targeted mouse knockouts and in long-term regenerated human mosaic epidermis in vivo, epidermal PRMT1 loss abolished progenitor self-renewal and led to premature differentiation. Mass spectrometry of the PRMT1 protein interactome identified the CSNK1a1 kinase, which also proved essential for progenitor maintenance. CSNK1a1 directly bound and phosphorylated PRMT1 to control its genomic targeting to PRMT1-sustained proliferation genes as well as PRMT1-suppressed differentiation genes. Among the latter were GRHL3, whose derepression was required for the premature differentiation seen with PRMT1 and CSNK1a1 loss. Maintenance of the progenitors thus requires cooperation by PRMT1 and CSNK1a1 to sustain proliferation gene expression and suppress premature differentiation driven by GRHL3.


Assuntos
Caseína Quinase Ialfa/metabolismo , Autorrenovação Celular/fisiologia , Células Epidérmicas , Queratinócitos/citologia , Proteína-Arginina N-Metiltransferases/fisiologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Epiderme/metabolismo , Humanos , Recém-Nascido , Queratinócitos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Células-Tronco/metabolismo
14.
Nat Genet ; 49(10): 1522-1528, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805829

RESUMO

Chromosome conformation is an important feature of metazoan gene regulation; however, enhancer-promoter contact remodeling during cellular differentiation remains poorly understood. To address this, genome-wide promoter capture Hi-C (CHi-C) was performed during epidermal differentiation. Two classes of enhancer-promoter contacts associated with differentiation-induced genes were identified. The first class ('gained') increased in contact strength during differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second class ('stable') were pre-established in undifferentiated cells, with enhancers constitutively marked by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, whereas the gained class was not, implying distinct mechanisms of contact formation and regulation. Analysis of stable enhancers identified a new, essential role for a constitutively expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-specific chromatin structure is established in tissue progenitor cells and is further remodeled in terminal differentiation.


Assuntos
Linhagem da Célula/genética , Cromossomos Humanos/ultraestrutura , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Queratinócitos/citologia , Regiões Promotoras Genéticas/genética , Acetilação , Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Cromossomos Humanos/genética , Células Epidérmicas , Biblioteca Gênica , Código das Histonas , Histonas/metabolismo , Humanos , Queratinócitos/metabolismo , Masculino , Processamento de Proteína Pós-Traducional , RNA/genética , Interferência de RNA , Fatores de Transcrição/metabolismo
15.
Nat Genet ; 49(11): 1602-1612, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945252

RESUMO

The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer-promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases.


Assuntos
Doenças Autoimunes/genética , Doenças Cardiovasculares/genética , DNA Intergênico/genética , Elementos Facilitadores Genéticos , Mutação , Regiões Promotoras Genéticas , Alelos , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Diferenciação Celular , Cromatina , Imunoprecipitação da Cromatina/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Intergênico/metabolismo , Genoma Humano , Histonas/genética , Histonas/metabolismo , Humanos , Células K562 , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/imunologia , Cultura Primária de Células , Locos de Características Quantitativas , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
16.
Nat Struct Mol Biol ; 23(3): 231-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26878240

RESUMO

RNA functions at enhancers remain mysterious. Here we show that the 7SK small nuclear RNA (snRNA) inhibits enhancer transcription by modulating nucleosome position. 7SK occupies enhancers and super enhancers genome wide in mouse and human cells, and it is required to limit enhancer-RNA initiation and synthesis in a manner distinct from promoter pausing. Clustered elements at super enhancers uniquely require 7SK to prevent convergent transcription and DNA-damage signaling. 7SK physically interacts with the BAF chromatin-remodeling complex, recruits BAF to enhancers and inhibits enhancer transcription by modulating chromatin structure. In turn, 7SK occupancy at enhancers coincides with that of Brd4 and is exquisitely sensitive to the bromodomain inhibitor JQ1. Thus, 7SK uses distinct mechanisms to counteract the diverse consequences of pervasive transcription that distinguish super enhancers, enhancers and promoters.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Nucleossomos/metabolismo , RNA Nuclear Pequeno/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Humanos , Camundongos
17.
Genome Biol ; 16: 284, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26683334

RESUMO

BACKGROUND: Open chromatin regions are correlated with active regulatory elements in development and are dysregulated in diseases. The BAF (SWI/SNF) complex is essential for development, and has been demonstrated to remodel reconstituted chromatin in vitro and to control the accessibility of a few individual regions in vivo. However, it remains unclear where and how BAF controls the open chromatin landscape to regulate developmental processes, such as human epidermal differentiation. RESULTS: Using a novel "on-plate" ATAC-sequencing approach for profiling open chromatin landscapes with a low number of adherent cells, we demonstrate that the BAF complex is essential for maintaining 11.6 % of open chromatin regions in epidermal differentiation. These BAF-dependent open chromatin regions are highly cell-type-specific and are strongly enriched for binding sites for p63, a master epidermal transcription factor. The DNA sequences of p63 binding sites intrinsically favor nucleosome formation and are inaccessible in other cell types without p63 to prevent ectopic activation. In epidermal cells, BAF and p63 mutually recruit each other to maintain 14,853 open chromatin regions. We further demonstrate that BAF and p63 cooperatively position nucleosomes away from p63 binding sites and recruit transcriptional machinery to control tissue differentiation. CONCLUSIONS: BAF displays high specificity in controlling the open chromatin landscape during epidermal differentiation by cooperating with the master transcription factor p63 to maintain lineage-specific open chromatin regions.


Assuntos
Linhagem da Célula , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Diferenciação Celular , Células Cultivadas , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Análise de Sequência de DNA
18.
J Biol Eng ; 3: 4, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19298678

RESUMO

BACKGROUND: The engineering of many-component, synthetic biological systems is being made easier by the development of collections of reusable, standard biological parts. However, the complexity of biology makes it difficult to predict the extent to which such efforts will succeed. As a first practical example, the Registry of Standard Biological Parts started at MIT now maintains and distributes thousands of BioBrick standard biological parts. However, BioBrick parts are only standardized in terms of how individual parts are physically assembled into multi-component systems, and most parts remain uncharacterized. Standardized tools, techniques, and units of measurement are needed to facilitate the characterization and reuse of parts by independent researchers across many laboratories. RESULTS: We found that the absolute activity of BioBrick promoters varies across experimental conditions and measurement instruments. We choose one promoter (BBa_J23101) to serve as an in vivo reference standard for promoter activity. We demonstrated that, by measuring the activity of promoters relative to BBa_J23101, we could reduce variation in reported promoter activity due to differences in test conditions and measurement instruments by approximately 50%. We defined a Relative Promoter Unit (RPU) in order to report promoter characterization data in compatible units and developed a measurement kit so that researchers might more easily adopt RPU as a standard unit for reporting promoter activity. We distributed a set of test promoters to multiple labs and found good agreement in the reported relative activities of promoters so measured. We also characterized the relative activities of a reference collection of BioBrick promoters in order to further support adoption of RPU-based measurement standards. CONCLUSION: Relative activity measurements based on an in vivoreference standard enables improved measurement of promoter activity given variation in measurement conditions and instruments. These improvements are sufficient to begin to support the measurement of promoter activities across many laboratories. Additional in vivo reference standards for other types of biological functions would seem likely to have similar utility, and could thus improve research on the design, production, and reuse of standard biological parts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa