Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 22(1): e3002486, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236896

RESUMO

Acute gastrointestinal infection with intracellular pathogens like Salmonella Typhimurium triggers the release of the proinflammatory cytokine interleukin 1ß (IL-1ß). However, the role of IL-1ß in intestinal defense against Salmonella remains unclear. Here, we show that IL-1ß production is detrimental during Salmonella infection. Mice lacking IL-1ß (IL-1ß -/-) failed to recruit neutrophils to the gut during infection, which reduced tissue damage and prevented depletion of short-chain fatty acid (SCFA)-producing commensals. Changes in epithelial cell metabolism that typically support pathogen expansion, such as switching energy production from fatty acid oxidation to fermentation, were absent in infected IL-1ß -/- mice which inhibited Salmonella expansion. Additionally, we found that IL-1ß induces expression of complement anaphylatoxins and suppresses the complement-inactivator carboxypeptidase N (CPN1). Disrupting this process via IL-1ß loss prevented mortality in Salmonella-infected IL-1ß -/- mice. Finally, we found that IL-1ß expression correlates with expression of the complement receptor in patients suffering from sepsis, but not uninfected patients and healthy individuals. Thus, Salmonella exploits IL-1ß signaling to outcompete commensal microbes and establish gut colonization. Moreover, our findings identify the intersection of IL-1ß signaling and the complement system as key host factors involved in controlling mortality during invasive Salmonellosis.


Assuntos
Interleucina-1beta , Infecções por Salmonella , Animais , Humanos , Camundongos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Neutrófilos/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Virulência
2.
Gastroenterology ; 160(1): 158-173.e10, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860791

RESUMO

BACKGROUND & AIMS: We evaluated the efficacy and safety of diet-modulated autologous fecal microbiota transplantation (aFMT) for treatment of weight regain after the weight-loss phase. METHODS: In the DIRECT PLUS (Dietary Intervention Randomized Controlled Trial Polyphenols-Unprocessed) weight-loss trial (May 2017 through July 2018), abdominally obese or dyslipidemic participants in Israel were randomly assigned to healthy dietary guidelines, Mediterranean diet, and green-Mediterranean diet weight-loss groups. All groups received free gym membership and physical activity guidelines. Both isocaloric Mediterranean groups consumed 28 g/d walnuts (+440 mg/d polyphenols provided). The green-Mediterranean dieters also consumed green tea (3-4 cups/d) and a Wolffia globosa (Mankai strain, 100 g/d) green shake (+800 mg/d polyphenols provided). After 6 months (weight-loss phase), 90 eligible participants (mean age, 52 years; mean weight loss, 8.3 kg) provided a fecal sample that was processed into aFMT by frozen, opaque, and odorless capsules. The participants were then randomly assigned to groups that received 100 capsules containing their own fecal microbiota or placebo until month 14. The primary outcome was regain of the lost weight over the expected weight-regain phase (months 6-14). Secondary outcomes were gastrointestinal symptoms, waist circumference, glycemic status, and changes in the gut microbiome, as measured by metagenomic sequencing and 16s ribosomal RNA. We validated the results in a parallel in vivo study of mice specifically fed with Mankai compared with control chow diet. RESULTS: Of the 90 participants in the aFMT trial, 96% ingested at least 80 of 100 oral aFMT or placebo frozen capsules during the transplantation period. No aFMT-related adverse events or symptoms were observed. For the primary outcome, although no significant differences in weight regain were observed among the participants in the different lifestyle interventions during months 6-14 (aFMT, 30.4% vs placebo, 40.6%; P = .28), aFMT significantly attenuated weight regain in the green-Mediterranean group (aFMT, 17.1%, vs placebo, 50%; P = .02), but not in the dietary guidelines (P = .57) or Mediterranean diet (P = .64) groups (P for the interaction = .03). Accordingly, aFMT attenuated waist circumference gain (aFMT, 1.89 cm vs placebo, 5.05 cm; P = .01) and insulin rebound (aFMT, -1.46 ± 3.6 µIU/mL vs placebo, 1.64 ± 4.7 µIU/mL; P = .04) in the green-Mediterranean group but not in the dietary guidelines or Mediterranean diet (P for the interaction = .04 and .03, respectively). The green-Mediterranean diet was the only intervention to induce a significant change in microbiome composition during the weight-loss phase, and to prompt preservation of weight-loss-associated specific bacteria and microbial metabolic pathways (mainly microbial sugar transport) after the aFMT. In mice, Mankai-modulated aFMT in the weight-loss phase compared with control diet aFMT, significantly prevented weight regain and resulted in better glucose tolerance during a high-fat diet-induced regain phase (all, P < .05). CONCLUSIONS: Autologous FMT, collected during the weight-loss phase and administrated in the regain phase, might preserve weight loss and glycemic control, and is associated with specific microbiome signatures. A high-polyphenols, green plant-based or Mankai diet better optimizes the microbiome for an aFMT procedure. ClinicalTrials.gov number, NCT03020186.


Assuntos
Transplante de Microbiota Fecal , Obesidade/dietoterapia , Aumento de Peso , Adulto , Animais , Dieta Mediterrânea , Modelos Animais de Doenças , Exercício Físico , Feminino , Humanos , Israel , Estilo de Vida , Masculino , Camundongos , Pessoa de Meia-Idade , Circunferência da Cintura , Redução de Peso
3.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963520

RESUMO

Exceptionally long-lived individuals (ELLI) who are the focus of many healthy longevity studies around the globe are now being studied in Israel. The Israeli Multi-Ethnic Centenarian Study (IMECS) cohort is utilized here for assessment of various DNA methylation clocks. Thorough phenotypic characterization and whole blood samples were obtained from ELLI, offspring of ELLI, and controls aged 53-87 with no familial exceptional longevity. DNA methylation was assessed using Illumina MethylationEPIC Beadchip and applied to DNAm age online tool for age and telomere length predictions. Relative telomere length was assessed using qPCR T/S (Telomere/Single copy gene) ratios. ELLI demonstrated juvenile performance in DNAm age clocks and overall methylation measurement, with preserved cognition and relative telomere length. Our findings suggest a favorable DNA methylation profile in ELLI enabling a slower rate of aging in those individuals in comparison to controls. It is possible that DNA methylation is a key modulator of the rate of aging and thus the ELLI DNAm profile promotes healthy longevity.


Assuntos
Envelhecimento/genética , Algoritmos , Metilação de DNA , Epigênese Genética , Longevidade/genética , Telômero/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Psychol Trauma ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023942

RESUMO

OBJECTIVE: Identifying biomarkers that can distinguish trauma-exposed youth at risk for developing posttraumatic pathology from resilient individuals is essential for targeted interventions. As trauma can alter the microbiome with lasting effects on the host, our longitudinal, multimeasure, cross-species study aimed to identify the microbial signature of posttraumatic stress disorder (PTSD). METHOD: We followed children exposed to war-related trauma and matched controls from early childhood (Mage = 2.76 years, N = 232) to adolescence (Mage = 16.13 years, N = 84), repeatedly assessing posttraumatic symptomatology and maternal caregiving. In late adolescence, we collected fecal samples from mothers and youth and assessed microbiome composition, diversity, and mother-child microbial synchrony. We then transplanted adolescents' fecal samples into germ-free mice to determine if behavioral changes are observed. RESULTS: Youth with PTSD exhibited a distinct gut microbiome profile and lower diversity compared to resilient individuals, and microbiome diversity mediated the continuity of posttraumatic symptomatology throughout development. Low microbiome diversity correlated with more posttraumatic symptoms in early childhood, more emotional and behavioral problems in adolescence, and poor maternal caregiving. Youth with PTSD demonstrated less mother-child microbial synchrony, suggesting that low microbial concordance between mother and child may indicate susceptibility to posttraumatic illness. Germ-free mice transplanted with microbiomes from individuals with PTSD displayed increased anxious behavior. CONCLUSIONS: Our findings provide evidence that the trauma-associated microbiome profile is at least partially responsible for the anxiety component of the PTSD phenotype and highlight microbial underpinnings of resilience. Further, our results suggest that the microbiome may serve as additional biological memory of early life stress and underscore the potential for microbiome-related diagnosis and treatment following trauma. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

5.
Cell Host Microbe ; 31(3): 433-446.e4, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36738733

RESUMO

Colonic goblet cells are specialized epithelial cells that secrete mucus to physically separate the host and its microbiota, thus preventing bacterial invasion and inflammation. How goblet cells control the amount of mucus they secrete is unclear. We found that constitutive activation of autophagy in mice via Beclin 1 enables the production of a thicker and less penetrable mucus layer by reducing endoplasmic reticulum (ER) stress. Accordingly, genetically inhibiting Beclin 1-induced autophagy impairs mucus secretion, while pharmacologically alleviating ER stress results in excessive mucus production. This ER-stress-mediated regulation of mucus secretion is microbiota dependent and requires the Crohn's-disease-risk gene Nod2. Overproduction of mucus alters the gut microbiome, specifically expanding mucus-utilizing bacteria, such as Akkermansia muciniphila, and protects against chemical and microbial-driven intestinal inflammation. Thus, ER stress is a cell-intrinsic switch that limits mucus secretion, whereas autophagy maintains intestinal homeostasis by relieving ER stress.


Assuntos
Células Caliciformes , Inflamação , Animais , Camundongos , Proteína Beclina-1 , Muco , Autofagia , Mucosa Intestinal/microbiologia
6.
Gut Microbes ; 15(2): 2264457, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796016

RESUMO

We previously reported that autologous-fecal-microbiota-transplantation (aFMT), following 6 m of lifestyle intervention, attenuated subsequent weight regain and insulin rebound for participants consuming a high-polyphenol green-Mediterranean diet. Here, we explored whether specific changes in the core (abundant) vs. non-core (low-abundance) gut microbiome taxa fractions during the weight-loss phase (0-6 m) were differentially associated with weight maintenance following aFMT. Eighty-two abdominally obese/dyslipidemic participants (age = 52 years; 6 m weightloss = -8.3 kg) who provided fecal samples (0 m, 6 m) were included. Frozen 6 m's fecal samples were processed into 1 g, opaque and odorless aFMT capsules. Participants were randomly assigned to receive 100 capsules containing their own fecal microbiota or placebo over 8 m-14 m in ten administrations (adherence rate > 90%). Gut microbiome composition was evaluated using shotgun metagenomic sequencing. Non-core taxa were defined as ≤ 66% prevalence across participants. Overall, 450 species were analyzed. At baseline, 13.3% were classified as core, and Firmicutes presented the highest core proportion by phylum. During 6 m weight-loss phase, abundance of non-core species changed more than core species (P < .0001). Subject-specific changes in core and non-core taxa fractions were strongly correlated (Jaccard Index; r = 0.54; P < .001). Following aFMT treatment, only participants with a low 6 m change in core taxa, and a high change in non-core taxa, avoided 8-14 m weight regain (aFMT = -0.58 ± 2.4 kg, corresponding placebo group = 3.18 ± 3.5 kg; P = .02). In a linear regression model, low core/high non-core 6 m change was the only combination that was significantly associated with attenuated 8-14 m weight regain (P = .038; P = .002 for taxa patterns/treatment intervention interaction). High change in non-core, low-abundance taxa during weight-loss might mediate aFMT treatment success for weight loss maintenance.ClinicalTrials.gov: NCT03020186.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Pessoa de Meia-Idade , Fezes , Redução de Peso , Aumento de Peso
7.
Eur J Intern Med ; 92: 17-23, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33883079

RESUMO

BACKGROUND: We recently reported that autologous fecal microbiota transplantation (aFMT), derived from the time of maximal weight-loss and administrated in the regain-phase, might preserve weight loss and glycemic control in moderately obese subjects, and is associated with specific microbiome signatures. Here, we sought to explore the global effect of aFMT on adipokines, inflammatory markers and blood cholesterol and on the overall gut microbiome preservation. METHODS: In the DIRECT-PLUS weight-loss trial, abdominally obese participants were randomized to three distinct weight-loss diets. Following the expected weight loss phase (0-6 m), 90 participants were randomized to receive their personal frozen fecal microbiota or placebo oral capsules (ten 1 g-capsules over ten sessions-total=100 g) during the expected weight regain phase (8-14 m). RESULTS: Of the 90 participants (age=52 yr; 0-6 m weight loss=-8.3 kg), 95.6% ingested at least 80/100 oral aFMT/placebo capsules over 6 months. Overall, the gut microbiome community structure was associated with plasma levels of leptin, cholesterol and interleukin-6 at baseline and after 6 m, whereas 6 m (weight loss phase) changes in specific microbiome species associated with the dynamic of leptin and inflammatory biomarkers. Following the 8-14 m aFMT administration phase, aFMT maintained decreased levels of leptin (ΔaFMT=-3.54 ng/mL vs. Δplacebo=-0.82 ng/mL;P = 0.04), C-reactive-protein (ΔaFMT=-1.45 mg/L vs. Δplacebo=-0.66 mg/L;P = 0.009), Interleukin-6 (ΔaFMT=-0.03pg/mL vs. Δplacebo=1.11pg/mL;P = 0.03) and total cholesterol (ΔaFMT=2.2 mg/dl vs. Δplacebo=13.1 mg/dl;P = 0.04) achieved in the weight loss phase. Overall, aFMT induced a significant preservatory effect on personal gut microbiome global composition (P = 0.03;Jensen-Shannon distance), as compared to placebo. CONCLUSIONS: aFMT treatment in the regain phase might retain weight-loss induced metabolic benefits. These findings may suggest a novel aFMT treatment approach for personal metabolic attainment preservation.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Fezes , Humanos , Pessoa de Meia-Idade , Obesidade/terapia , Redução de Peso
8.
J Biol Rhythms ; 27(1): 12-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22306970

RESUMO

Honey bee workers care for ("nurse") the brood around the clock without circadian rhythmicity, but then they forage outside with strong circadian rhythms and a consolidated nightly rest. This chronobiological plasticity is associated with variation in the expression of the canonical "clock genes" that regulate the circadian clock: nurse bees show no brain rhythms of expression, while foragers do. These results suggest that the circadian system is organized differently in nurses and foragers. Nurses switch to activity with circadian rhythms shortly after being removed from the hive, suggesting that at least some clock cells in their brain continue to measure time while in the hive. We performed a microarray genome-wide survey to determine general patterns of brain gene expression in nurses and foragers sampled around the clock. We found 160 and 541 transcripts that exhibited significant sinusoidal oscillations in nurses and foragers, respectively, with peaks of expression distributed throughout the day in both task groups. Consistent with earlier studies, transcripts of genes involved in circadian rhythms, including Clockwork Orange that has not been studied before in bees, oscillated in foragers but not in nurses. The oscillating transcripts also were enriched for genes involved in the visual system, "development" and "response to stimuli" (foragers), "muscle contraction" and "microfilament motor gene expression" (nurses), and "generation of precursor metabolites" and "energy" (both). Transcripts of genes encoding P450 enzymes oscillated in both nurses and foragers but with a different phase. This study identified new putative clock-controlled genes in the honey bee and suggests that some brain functions show circadian rhythmicity even in nurse bees that are active around the clock.


Assuntos
Abelhas/fisiologia , Encéfalo/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Comportamento Social , Animais , Abelhas/genética , Ritmo Circadiano/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Estudo de Associação Genômica Ampla , Atividade Motora/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Periodicidade , RNA Mensageiro/análise , Opsinas de Bastonetes/genética
9.
Genome Res ; 16(11): 1352-65, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17065608

RESUMO

The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.


Assuntos
Abelhas/genética , Ritmo Circadiano/genética , Evolução Molecular , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Abelhas/fisiologia , Encéfalo/metabolismo , Drosophila/genética , Proteínas de Drosophila , Expressão Gênica , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Circadianas Period , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa