RESUMO
Lyme disease is a multisystem disorder primarily caused by Borrelia burgdorferi sensu lato. However, B. garinii, which has been identified on islands off the coast of Newfoundland and Labrador, Canada, is a cause of Lyme disease in Eurasia. We report isolation and whole-genome nucleotide sequencing of a B. garinii isolate from a cotton mouse (Peromyscus gossypinus) in South Carolina, USA. We identified a second B. garinii isolate from the same repository. Phylogenetic analysis does not associate these isolates with the previously described isolates of B. garinii from Canada.
Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Animais , Estados Unidos/epidemiologia , Grupo Borrelia Burgdorferi/genética , Filogenia , Doença de Lyme/epidemiologia , Peromyscus , GenômicaRESUMO
Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.
Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Doença de Lyme , Humanos , Borrelia/genética , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , EncéfaloRESUMO
Lyme disease, the most common vector-borne illness in North America, is caused by the spirochete Borrelia burgdorferi. Infection begins in the skin following a tick bite and can spread to the hearts, joints, nervous system, and other organs. Diverse host responses influence the level of B. burgdorferi infection in mice and humans. Using a systems biology approach, we examined potential molecular interactions between human extracellular and secreted proteins and B. burgdorferi. A yeast display library expressing 1031 human extracellular proteins was probed against 36 isolates of B. burgdorferi sensu lato. We found that human Peptidoglycan Recognition Protein 1 (PGLYRP1) interacted with the vast majority of B. burgdorferi isolates. In subsequent experiments, we demonstrated that recombinant PGLYRP1 interacts with purified B. burgdorferi peptidoglycan and exhibits borreliacidal activity, suggesting that vertebrate hosts may use PGLYRP1 to identify B. burgdorferi. We examined B. burgdorferi infection in mice lacking PGLYRP1 and observed an increased spirochete burden in the heart and joints, along with splenomegaly. Mice lacking PGLYRP1 also showed signs of immune dysregulation, including lower serum IgG levels and higher levels of IFNγ, CXCL9, and CXCL10.Taken together, our findings suggest that PGLYRP1 plays a role in the host's response to B. burgdorferi and further demonstrate the utility of expansive yeast display screening in capturing biologically relevant interactions between spirochetes and their hosts.
Assuntos
Borrelia burgdorferi/fisiologia , Citocinas/metabolismo , Doença de Lyme/microbiologia , Animais , Citocinas/genética , Biblioteca Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Background: While the influence of landscape and microclimatic conditions on tick populations is well-documented, there remains a gap in more specific data regarding their relationship to rewilding efforts with large herbivore activity. Objective: This pilot study, spanning from 2019 to 2021, explores the effects of naturalistic grazing by large semi-wild ungulates on tick abundance in the Milovice Reserve, Czechia. Methods: Tick collection was observed using flagging techniques at two distinct sites of rewilding area: one grazed, actively utilized by animals involved in the rewilding project, and one ungrazed, left fallow in neighboring areas utilized only by wild animals. Transects, each measuring 150 m in length and 5 m in width (750 m2), were established at these two sampling locations from March to September between 2019 and 2021. To minimize potential bias resulting from tick movement, a 300 m buffer zone separated the two sites. Data analysis employed a generalized estimating equations (GEE) model with negative binomial regression. The study assessed potential variations in tick abundance between selected transects, considering factors such as plant cover seasonality, temperature, and humidity. Results: During the collection periods, we gathered 586 live ticks, with 20% found in grazed areas and 80% in ungrazed areas. Notably, tick abundance was significantly higher in ungrazed areas. Peaks in tick abundance occurred in both grazed and ungrazed areas during spring, particularly in April. However, tick numbers declined more rapidly in grazed areas. Microclimatic variables like temperature and humidity did not significantly impact tick abundance compared to landscape management and seasonal factors. Conclusion: Rewilding efforts, particularly natural grazing by large ungulates, influence tick abundance and distribution. This study provides empirical data on tick ecology in rewilded areas, highlighting the importance of landscape management and environmental factors in tick management and conservation. Trophic rewilding plays a crucial role in shaping ecosystems and tick population dynamics in transformed landscapes.
Assuntos
Herbivoria , Ixodes , Animais , Ixodes/fisiologia , República Tcheca , Conservação dos Recursos Naturais , Projetos Piloto , Ecossistema , Densidade Demográfica , Estações do AnoRESUMO
Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE: Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
Assuntos
Genoma Bacteriano , Lipoproteínas , Doença de Lyme , Filogenia , Recombinação Genética , Seleção Genética , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Lipoproteínas/genética , Humanos , América do Norte , Variação Genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/classificação , Europa (Continente) , Plasmídeos/genética , Ixodes/microbiologia , Borrelia/genética , Borrelia/classificação , Evolução Molecular , Sequenciamento Completo do Genoma , Animais , Interações entre Hospedeiro e Microrganismos/genética , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/classificaçãoRESUMO
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Humanos , Borrelia burgdorferi/genética , Virulência , Fatores de Virulência , MamíferosRESUMO
Lyme borreliosis (LB) is the most prevalent tick-borne human infection in Europe, with increasing incidence during the latest decades. Abundant populations of Ixodes ricinus, the main vector of the causative agent, spirochetes from the Borrelia burgdorferi sensu lato (Bbsl) complex, have been observed in urban and suburban areas of Europe, in general, and Slovakia, particularly. Understanding the spread of infectious diseases is crucial for implementing effective control measures. Global changes affect contact rates of humans and animals with Borrelia-infected ticks and increase the risk of contracting LB. The aim of this study was to investigate spatial and temporal variation in prevalence of Bbsl and diversity of its species in questing I. ricinus from three sites representing urban/suburban, natural and agricultural habitat types in Slovakia. Ixodes ricinus nymphs and adults were collected by dragging the vegetation in green areas of Bratislava town (urban/suburban habitat), in the Small Carpathians Mountains (natural habitat) (south-western Slovakia) and in an agricultural habitat at Rozhanovce in eastern Slovakia. Borrelia presence in ticks was detected by PCR and Bbsl species were identified by restriction fragment length polymorphism (RFLP). Borrelia burgdorferi s.l. species in coinfected ticks were identified by reverse line blot. Significant spatial and temporal variability in prevalence of infected ticks was revealed in the explored habitats. The lowest total prevalence was detected in the urban/suburban habitat, whereas higher prevalence was found in the natural and agricultural habitat. Six Bbsl species were detected by RFLP in each habitat type -B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. valaisiana, B. lusitaniae and B. spielmanii. Coinfections accounted for 3% of the total infections, whereby B. kurtenbachii was identified by RLB and sequencing in mixed infection with B. burgdorferi s.s, B. garinii and B. valaisiana. This finding represents the first record of B. kurtenbachii in questing I. ricinus in Slovakia and Europe. Variations in the proportion of Bbsl species were found between nymphs and adults, between years and between habitat types. Spatial variations in prevalence patterns and proportion of Bbsl species were also confirmed between locations within a relatively short distance in the urban habitat. Habitat-related and spatial variations in Borrelia prevalence and distribution of Bbsl species are probably associated with the local environmental conditions and vertebrate host spectrum. Due to the presence of Borrelia species pathogenic to humans, all explored sites can be ranked as areas with high epidemiological risk.
RESUMO
The Borrelia consists of three groups of species, those of the Lyme borreliosis (LB) group, also known as B. burgdorferi sensu lato (s.l.) and recently reclassified into Borreliella, the relapsing fever (RF) group Borrelia, and a third reptile-associated group of spirochetes. Culture-based methods remain the gold standard for the laboratory detection of bacterial infections for both research and clinical work, as the culture of pathogens from bodily fluids or tissues directly detects replicating pathogens and provides source material for research. Borrelia and Borreliella spirochetes are fastidious and slow growing, and thus are not commonly cultured for clinical purposes; however, culture is necessary for research. This protocol demonstrates the methodology and recipes required to successfully culture LB and RF spirochetes, including all recognized species from B. burgdorferi s.l. complex including B. afzelii, B. americana, B. andersonii, B. bavariensis, B. bissettii/bissettiae, B. burgdorferi sensu stricto (s.s.), B. californiensis, B. carolinensis, B. chilensis, B. finlandensis, B. garinii, B. japonica, B. kurtenbachii, B. lanei, B. lusitaniae, B. maritima, B. mayonii, B. spielmanii, B. tanukii, B. turdi, B. sinica, B. valaisiana, B. yangtzensis, and RFspirochetes, B. anserina, B. coriaceae, B. crocidurae, B. duttonii, B. hermsii, B. hispanica, B. persica, B. recurrentis, and B. miyamotoi. The basic medium for growing LB and RF spirochetes is the Barbour-Stoenner-Kelly (BSK-II or BSK-H) medium, which reliably supports the growth of spirochetes in established cultures. To be able to grow newly isolated Borrelia isolates from tick- or host-derived samples where the initial spirochete number is low in the inoculum, modified Kelly-Pettenkofer (MKP) medium is preferred. This medium also supports the growth of B. miyamotoi. The success of the cultivation of RF spirochetes also depends critically on the quality of ingredients.
Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Doença de Lyme , Febre Recorrente , Humanos , Febre Recorrente/diagnóstico , Doença de Lyme/diagnósticoRESUMO
Ticks transmit a broad spectrum of pathogens, threatening both animal and human health. Tick survival and proliferation are strongly dependent on host selection and suitability. The hard tick Ixodes ricinus, which is widespread throughout most of Europe, is a host generalist capable of feeding on many different vertebrate species. Pasture-kept exotic farm animals may be at a high risk for tick and tick-borne pathogens infestations but research characterizing this is currently lacking. This study focused on the detection of Borrelia spirochetes (including Borrelia miyamotoi) in exotic farm animals. Using nested-PCR with Borrelia-specific primers, 121 serum samples from 54 exotic farm animals of several species bred in four different farms in Bohemia and Moravia (Czechia) were tested. Positive samples were sequenced for the identification of Borrelia species. The prevalence of Borrelia DNA in the samples ranged from 13 to 67%, depending on the sampling site. The sequencing results confirmed the DNA presence of multiple spirochete species from the Borrelia burgdorferi sensu lato complex. Only one sample from an ostrich (Struthio camelus) was found to be positive for Borrelia myiamotoi. The results show that exotic farm animals can serve as hosts for hard ticks and can be infected by Borrelia spirochetes, transmitted by hard ticks. Therefore, these animals could play a relevant role in maintaining Borrelia spirochetes in nature.
RESUMO
Transmission of the causative agents of numerous infectious diseases might be potentially conducted by various routes if this is supported by the genetics of the pathogen. Various transmission modes occur in related pathogens, reflecting a complex process that is specific for each particular host-pathogen system that relies on and is affected by pathogen and host genetics and ecology, ensuring the epidemiological spread of the pathogen. The recent dramatic rise in diagnosed cases of Lyme borreliosis might be due to several factors: the shifting of the distributional range of tick vectors caused by climate change; dispersal of infected ticks due to host animal migration; recent urbanization; an increasing overlap of humans' habitat with wildlife reservoirs and the environment of tick vectors of Borrelia; improvements in disease diagnosis; or establishment of adequate surveillance. The involvement of other bloodsucking arthropod vectors and/or other routes of transmission (human-to-human) of the causative agent of Lyme borreliosis, the spirochetes from the Borrelia burgdorferi sensu lato complex, has been speculated to be contributing to increased disease burden. It does not matter how controversial the idea of vector-free spirochete transmission might seem in the beginning. As long as evidence of sexual transmission of Borrelia burgdorferi both between vertebrate hosts and between tick vectors exists, this question must be addressed. In order to confirm or refute the existence of this phenomenon, which could have important implications for Lyme borreliosis epidemiology, the need of extensive research is obvious and required.
RESUMO
Ticks are ubiquitous ectoparasites, feeding on representatives of all classes of terrestrial vertebrates and transmitting numerous pathogens of high human and veterinary medical importance. Exotic animals kept in zoological gardens, ranches, wildlife parks or farms may play an important role in the ecology of ticks and tick-borne pathogens (TBPs), as they may serve as hosts for local tick species. Moreover, they can develop diseases of varying severity after being infected by TBPs, and theoretically, can thus serve as reservoirs, thereby further propagating TBPs in local ecosystems. The definite role of these animals in the tick-host-pathogen network remains poorly investigated. This review provides a summary of the information currently available regarding ticks and TBPs in connection to captive local and exotic wildlife, with an emphasis on zoo-housed species.
RESUMO
The hypothesized importance of coinfections in the pathogenesis of post-treatment Lyme disease syndrome (PTLDS) leads to the use of combined, ongoing antimicrobial treatment in many cases despite the absence of symptoms typical of the presence of infection with specific pathogens. Serum samples from 103 patients with suspected post-treatment Lyme disease syndrome were tested for the presence of antibodies to the major tick-borne pathogens Anaplasma phagocytophilum, Bartonella henselae/Bartonella quinatana, and Babesia microti. Although the presence of anti-Anaplasma antibodies was detected in 12.6% of the samples and anti-Bartonella antibodies in 9.7% of the samples, the presence of antibodies against both pathogens in the same samples or anti-Babesia antibodies in the selected group of patients could not be confirmed. However, we were able to detect autoantibodies, mostly antinuclear, in 11.6% of the patients studied. Our results are in good agreement with previously published studies showing the presence of a wide spectrum of autoantibodies in some patients with complicated forms of Lyme disease and post-treatment Lyme disease syndrome, but they do not reveal a significant influence of co-infections on the development of PTLDS in the studied group of patients.
RESUMO
Red foxes (Vulpes vulpes) have been recognised to harbour and transmit a wide range of tick-borne pathogens (TBPs) including those of zoonotic concern. To investigate the prevalence and the distribution of TBPs and of Leishmania infantum in foxes (n = 244), spleen samples were collected within the frame of a multi-regional wildlife health surveillance program in Italy. A combined PCR/sequencing approach was performed for the detection of Anaplasma spp., Babesia spp., Borrelia spp., Ehrlichia spp., Hepatozoon spp. and L. infantum DNA. Overall, 146 foxes (59.8 %, 95 % CI: 53.6-65.8) tested positive for at least one pathogen with Hepatozoon canis being the most prevalent (i.e., n = 124; 50.8 %, 95 % CI: 44.6-57.0), followed by Babesia vulpes (n = 20; 8.2 %, 95 % CI: 5.4-12.3), different spirochete species from Borrelia burgdorferi sensu lato complex (n = 9; 3.7 %, 95 % CI: 1.9-6.9), Ehrlichia canis and L. infantum (n = 7; 2.9 % each, 95 % CI: 1.4-5.8), Anaplasma platys (n = 4; 1.6 %, 95 % CI: 0.6-4.1), Anaplasma phagocytophilum ecotype I and Candidatus Neoehrlichia sp. (n = 3; 1.2 % each, 95 % CI: 0.4-3.5). All samples scored negative for Babesia canis and Borrelia miyamotoi. This study revealed the presence of spirochetes from B. burgdorferi s.l. complex, Ca. Neoehrlichia sp., A. platys and A. phagocytophilum ecotype I in red fox population from Italy, underling the necessity to monitoring these carnivores, mainly because they live in contact with dogs and humans. Data on the tick fauna circulating on wildlife species will complement information herein obtained, instrumentally to establish preventive strategies for minimizing the risk of infection for animals and humans.
Assuntos
Raposas , Leishmaniose Visceral/veterinária , Doenças Transmitidas por Carrapatos/veterinária , Animais , DNA Bacteriano/análise , DNA de Protozoário/análise , Feminino , Itália/epidemiologia , Leishmania infantum/isolamento & purificação , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Masculino , Prevalência , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologiaRESUMO
In Slovakia, little knowledge is available on the occurrence, hosts and vectors of Borrelia miyamotoi of the relapsing fever group. In the current study, 2160 questing and rodent-attached ticks of six species (Ixodes ricinus, Ixodes trianguliceps, Dermacentor marginatus, Dermacentor reticulatus, Haemaphysalis concinna and Haemaphysalis inermis), 279 fleas belonging to 9 species (Ctenophthalmus agyrtes, Ctenophthalmus solutus, Ctenophthalmus assimilis, Megabothris turbidus, Amalareus penicilliger, Hystrichopsylla orientalis, Ctenophthalmus uncinatus, Doratopsylla dasycnema and Nosopsyllus fasciatus) and skin biopsies from 245 small mammals belonging to eight species (Apodemus agrarius, Apodemus flavicollis, Apodemus uralensis, Myodes glareolus, Crocidura leucodon, Micromys minutus, Microtus arvalis, Microtus subterraneus) were screened for the presence of B. miyamotoi DNA. The overall prevalence of B. miyamotoi found in questing and rodent-attached ticks was 1.8% (23 positive/1260 examined) and 3.4% (31 positive/900 examined), respectively. Borrelia miyamotoi was detected in questing I. ricinus, rodent-attached I. ricinus and H. inermis ticks, and in one male of the common vole (M. arvalis) in different habitats (mainly rural) in eastern Slovakia. However, B. miyamotoi was not found in any of the tested fleas. Our findings indicate that rural habitats with different species of tick vectors and hosts are appropriate for the occurrence of B. miyamotoi.
Assuntos
Infecções por Borrelia/veterinária , Borrelia/isolamento & purificação , Interações Hospedeiro-Parasita , Ixodidae/microbiologia , Doenças dos Roedores/epidemiologia , Sifonápteros/microbiologia , Animais , Infecções por Borrelia/epidemiologia , Infecções por Borrelia/microbiologia , Meio Ambiente , Prevalência , Doenças dos Roedores/microbiologia , Roedores , EslováquiaRESUMO
Lyme borreliosis (LB), caused by spirochetes of the Borrelia burgdorferi sensu lato (s.l.) complex, is one of the most common vector-borne zoonotic diseases in Europe. Knowledge about the enzootic circulation of Borrelia pathogens between ticks and their vertebrate hosts is epidemiologically important and enables assessment of the health risk for the human population. In our project, we focused on the following vertebrate species: European hedgehog (Erinaceus europaeus), Northern white-breasted hedgehog (E. roumanicus), Eurasian red squirrel (Sciurus vulgaris), and Common blackbird (Turdus merula). The cadavers of accidentally killed animals used in this study constitute an available source of biological material, and we have confirmed its potential for wide monitoring of B. burgdorferi s.l. presence and genospecies diversity in the urban environment. High infection rates (90% for E. erinaceus, 73% for E. roumanicus, 91% for S. vulgaris, and 68% for T. merula) were observed in all four target host species; mixed infections by several genospecies were detected on the level of individuals, as well as in particular tissue samples. These findings show the usefulness of multiple tissue sampling as tool for revealing the occurrence of several genospecies within one animal and the risk of missing particular B. burgdorferi s.l. genospecies when looking in one organ alone.
RESUMO
The survival of spirochetes from the Borrelia burgdorferi (sensu lato) complex in a hostile environment is achieved by the regulation of differential gene expression in response to changes in temperature, salts, nutrient content, acidity fluctuation, multiple host or vector dependent factors, and leads to the formation of dormant subpopulations of cells. From the other side, alterations in the level of gene expression in response to antibiotic pressure leads to the establishment of a persisters subpopulation. Both subpopulations represent the cells in different physiological states. "Dormancy" and "persistence" do share some similarities, e.g. both represent cells with low metabolic activity that can exist for extended periods without replication, both constitute populations with different gene expression profiles and both differ significantly from replicating forms of spirochetes. Persisters are elusive, present in low numbers, morphologically heterogeneous, multi-drug-tolerant cells that can change with the environment. The definition of "persisters" substituted the originally-used term "survivors", referring to the small bacterial population of Staphylococcus that survived killing by penicillin. The phenomenon of persisters is present in almost all bacterial species; however, the reasons why Borrelia persisters form are poorly understood. Persisters can adopt varying sizes and shapes, changing from well-known forms to altered morphologies. They are capable of forming round bodies, L-form bacteria, microcolonies or biofilms-like aggregates, which remarkably change the response of Borrelia to hostile environments. Persisters remain viable despite aggressive antibiotic challenge and are able to reversibly convert into motile forms in a favorable growth environment. Persisters are present in significant numbers in biofilms, which has led to the explanation of biofilm tolerance to antibiotics. Considering that biofilms are associated with numerous chronic diseases through their resilient presence in the human body, it is not surprising that interest in persisting cells has consequently accelerated. Certain diseases caused by pathogenic bacteria (e.g. tuberculosis, syphilis or leprosy) are commonly chronic in nature and often recur despite antibiotic treatment. Three decades of basic and clinical research have not yet provided a definite answer to the question: is there a connection between persisting spirochetes and recurrence of Lyme disease in patients?