RESUMO
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Assuntos
Gânglios da Base , Percepção do Tempo , Gânglios da Base/fisiologia , Animais , Humanos , Percepção do Tempo/fisiologia , Neurônios/fisiologia , Sensação/fisiologiaRESUMO
The substantia nigra pars reticulata (SNr), where the basal ganglia (BG) direct and indirect pathways converge, contains among the highest expression of cannabinoid receptor type 1 (CB1r) in the brain. Hence, SNr is an ideal locus to study pathway interactions and cannabinergic modulations. The objective of this study was to characterize the effects of systemic injections of the CB1r agonist (CP55940) on the balanced activity of the direct/indirect pathways in the SNr and its associated behaviors. To this aim, we recorded somatosensory and pathway-specific representations in the spiking activity of the SNr of male rats under CP55940. CB1r activation mainly decreased the inhibitory, potentially direct pathway component while sparing the excitatory, potentially indirect pathway component of somatosensory responses. As a result, cutaneous stimulation produced unbalanced responses favoring increased SNr firing rates, suggesting a potential locus for cannabinergic motor-related effects. To test this hypothesis, we implemented an ad hoc behavioral protocol for rats in which systemic administration of CP55940 produced kinematic impairments that were completely reverted by nigral injections of the CB1r antagonist (AM251). Our data suggest that cannabinoid-related motor effects are associated with unbalanced direct/indirect pathway activations that may be reverted by CB1r manipulation at the SNr.SIGNIFICANCE STATEMENT The cannabinergic system has been the target of multiple studies to master its potential use as a therapeutic agent. However, significant advances have been precluded by the lack of mechanistic explanations for the variety of its desirable/undesirable effects. Here, we have combined electrophysiological recordings, pharmacological and optogenetic manipulations, and an ad hoc behavioral protocol to understand how basal ganglia (BG) is affected by cannabinoids. We found that cannabinoids principally affect inhibitory inputs, potentially from the direct pathway, resulting in unbalanced responses in the substantia nigra pars reticulata (SNr) and suggesting a mechanism for the cannabinoid-related slowness of movements. This possibility was confirmed by behavioral experiments in which cannabinoid-related slowness of purposeful movements was reverted by cannabinoid receptor type 1 (CB1r) manipulations directly into the SNr.
Assuntos
Canabinoides/farmacologia , Proteínas de Transporte/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Substância Negra/fisiologia , Animais , Proteínas de Transporte/agonistas , Proteínas de Transporte/antagonistas & inibidores , Cicloexanóis/farmacologia , Masculino , Movimento/efeitos dos fármacos , Parte Reticular da Substância Negra , Piperidinas/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Pirazóis/farmacologia , Ratos , Ratos Long-Evans , Substância Negra/efeitos dos fármacosRESUMO
Activation of type 1 cannabinoid receptors (CB1R) decreases GABA and glutamate release in cortical and subcortical regions, with complex outcomes on cortical network activity. To date there have been few attempts to disentangle the region- and cell-specific mechanisms underlying the effects of cannabinoids on cortical network activity in vivo. Here we addressed this issue by combining in vivo electrophysiological recordings with local and systemic pharmacological manipulations in conditional mutant mice lacking CB1R expression in different neuronal populations. First we report that cannabinoids induce hypersynchronous thalamocortical oscillations while decreasing the amplitude of faster cortical oscillations. Then we demonstrate that CB1R at striatonigral synapses (basal ganglia direct pathway) mediate the thalamocortical hypersynchrony, whereas activation of CB1R expressed in cortical glutamatergic neurons decreases cortical synchrony. Finally we show that activation of CB1 expressed in cortical glutamatergic neurons limits the cannabinoid-induced thalamocortical hypersynchrony. By reporting that CB1R activations in cortical and subcortical regions have contrasting effects on cortical synchrony, our study bridges the gap between cellular and in vivo network effects of cannabinoids. Incidentally, the thalamocortical hypersynchrony we report suggests a potential mechanism to explain the sensory "high" experienced during recreational consumption of marijuana.
Assuntos
Canabinoides/farmacologia , Córtex Cerebral/citologia , Corpo Estriado/citologia , Neurônios GABAérgicos/metabolismo , Rede Nervosa/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Sincronização Cortical , Cicloexanóis , Eletromiografia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Mutantes , Rede Nervosa/efeitos dos fármacos , Piperidinas , Pirazóis , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/genética , Estatísticas não Paramétricas , Substância Negra/fisiologia , Tálamo/fisiologiaRESUMO
The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.
Assuntos
Globo Pálido/fisiologia , Potenciais Pós-Sinápticos Inibidores , Receptor Muscarínico M1/metabolismo , Sinapses/metabolismo , Animais , Atropina/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Globo Pálido/citologia , Peptídeos e Proteínas de Sinalização Intercelular , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Peptídeos/farmacologia , Pirenzepina/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/fisiologiaRESUMO
The basal ganglia are thought to contribute to decision-making and motor control. These functions are critically dependent on timing information, which can be extracted from the evolving state of neural populations in their main input structure, the striatum. However, it is debated whether striatal activity underlies latent, dynamic decision processes or kinematics of overt movement. Here, we measured the impact of temperature on striatal population activity and the behavior of rats, and compared the observed effects with neural activity and behavior collected in multiple versions of a temporal categorization task. Cooling caused dilation, and warming contraction, of both neural activity and patterns of judgment in time, mimicking endogenous decision-related variability in striatal activity. However, temperature did not similarly affect movement kinematics. These data provide compelling evidence that the timecourse of evolving striatal activity dictates the speed of a latent process that is used to guide choices, but not continuous motor control. More broadly, they establish temporal scaling of population activity as a likely neural basis for variability in timing behavior.
Assuntos
Gânglios da Base , Tomada de Decisões , Gânglios da Base/fisiologia , Tomada de Decisões/fisiologia , Animais , Ratos , Temperatura , Fatores de Tempo , Fenômenos Biomecânicos , Movimento , Masculino , Ratos Long-EvansRESUMO
Although the consumption of carbohydrates is needed for survival, their potent reinforcing properties drive obesity worldwide. In turn, sugar overconsumption reveals a major role for brain reward systems in regulating sugar intake. However, it remains elusive how different cell types within the reward circuitries control the initiation and termination of sugary meals. Here, we identified the distinct nucleus accumbens cell types that mediate the chemosensory versus postprandial properties of sweet sugars. Specifically, D1 neurons enhance sugar intake via specialized connections to taste ganglia, whereas D2 neurons mediate the termination of sugary meals via anatomical connections to circuits involved in appetite suppression. Consistently, D2, but not D1, neurons partially mediate the satiating effects of glucagon-like peptide 1 (GLP-1) agonists. Thus, these nucleus accumbens cell types function as a behavioral switch, enabling positive versus negative control over sugar intake. Our study contributes to unveiling the cellular and circuit substrates of sugar overconsumption.
Assuntos
Neurônios , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Açúcares/metabolismo , Receptores de Dopamina D1/metabolismoRESUMO
There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, we used electrophysiological techniques to describe dopamine D(1)-receptor-mediated facilitation in striatonigral synapses in the context of its interaction with glutamatergic inputs, probably coming from the subthalamic nucleus (STN) (indirect pathway) and describe a striatonigral cannabinoid-dependent long-term synaptic depression (LTD). It is shown that striatonigral afferents exhibit D(1)-receptor-mediated facilitation of synaptic transmission when NMDA receptors are inactive, a phenomenon that changes to cannabinoid-dependent LTD when NMDA receptors are active. This interaction makes SNr neurons become coincidence-detector switching ports: When inactive, NMDA receptors lead to a dopamine-dependent enhancement of direct pathway output, theoretically facilitating movement. When active, NMDA receptors result in LTD of the same synapses, thus decreasing movement. We propose that SNr neurons, working as logical gates, tune the motor system to establish a balance between both BG pathways, enabling the system to choose appropriate synergies for movement learning and postural support.
Assuntos
Corpo Estriado/citologia , Depressão Sináptica de Longo Prazo/fisiologia , Substância Negra/citologia , Transmissão Sináptica/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Gânglios da Base , Benzazepinas/farmacologia , Benzoxazinas/farmacologia , Biofísica , Canabinoides/agonistas , Quelantes/farmacologia , Agonistas de Dopamina/farmacologia , Interações Medicamentosas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Vias Neurais/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Sinapses , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologiaRESUMO
Movement initiation and control require the orchestrated activity of sensorimotor cortical and subcortical regions. However, the exact contribution of specific pathways and interactions to the final behavioral outcome are still under debate. Here, by combining structural lesions, pathway-specific optogenetic manipulations and freely moving electrophysiological recordings in rats, we studied cortico-striatal interactions in the context of forelimb bilaterally coordinated movements. We provide evidence indicating that bilateral actions are initiated by motor cortical regions where intratelencephalic bilateral cortico-striatal (bcs-IT) projections recruit the sensorimotor striatum to provide stability and duration to already commanded bilateral movements. Furthermore, striatal spiking activity was correlated with movement duration and kinematic parameters of the execution. bcs-IT stimulation affected only the representation of movement duration but spared that of kinematics. Our findings confirm the modular organization of information processing in the striatum and its involvement in moment-to-moment movement control but not initiation or selection.
RESUMO
Intralaminar thalamic nuclei, including the central medial nucleus (CMT), have been classically implicated in the control of attentional functional states such as sleep-wake transitions. In rodents, the CMT innervates large cortical and subcortical areas bilaterally, including sensorimotor regions of the cortex and striatum, but its contribution to motor function, which regularly develops in faster temporal scales than attentional states, is still far from being completely understood. Here, by using a novel behavioral protocol to evaluate bilateral coordination in rats, combined with electrophysiological recordings and optogenetic manipulations, we studied the contribution of the CMT to motor control and coordination. We found that optogenetic stimulation of the central region of the CMT produced bilateral recruitment of neural activity in the sensorimotor cortex and striatum. The same type of stimulations produced a significant increase in bilateral movement coordination of the forelimbs accompanied by a decrease in movement trajectory variability. Optogenetic inactivation of the CMT did not affect motor execution but significantly increased execution times, suggesting less interest in the task. Altogether, our results indicate that brief CMT activations create windows of synchronized bilateral cortico-striatal activity, suitable to facilitate motor coordination in temporal scales relevant for motor execution.
Assuntos
Núcleos Intralaminares do Tálamo , Animais , Corpo Estriado , Núcleos Intralaminares do Tálamo/fisiologia , Movimento/fisiologia , Neostriado , Vias Neurais/fisiologia , Optogenética , Ratos , Núcleos Talâmicos/fisiologiaRESUMO
In parkinsonian conditions, network dynamics in the cortical and basal ganglia circuits present abnormal oscillations and periods of high synchrony, affecting the functionality of multiple striatal regions including the sensorimotor striatum. However, it is still unclear how these altered dynamics impact on sensory processing, a key feature for motor control that is severely impaired in parkinsonian patients. A major confound is that pathological dynamics in sensorimotor networks may elicit unspecific motor responses that may alter sensory representations through sensory feedback, making it difficult to disentangle motor and sensory components. To address this issue, we studied sensory processing using an anesthetized model with robust sensory representations throughout cortical and basal ganglia sensory regions and limited motor confounds in control and hemiparkinsonian rats. A general screening of sensory-evoked activity in large populations of neurons recorded in the primary sensory cortex (S1), dorsolateral striatum (DLS) and substantia nigra pars reticulata (SNr) revealed increased excitability and altered sensory representations in the three regions. Further analysis revealed uncoordinated population dynamics between DLS and S1/SNr. Finally, DLS lesions in hemiparkinsonian animals partially recovered population dynamics and execution in the rotarod.
Assuntos
Gânglios da Base , Transtornos Parkinsonianos , Animais , Corpo Estriado , Humanos , Neurônios , RatosRESUMO
Cannabinoids impair hippocampus-dependent memory in both humans and animals, but the network mechanisms responsible for this effect are unknown. Here we show that the cannabinoids Delta(9)-tetrahydrocannabinol and CP55940 decreased the power of theta, gamma and ripple oscillations in the hippocampus of head-restrained and freely moving rats. These effects were blocked by a CB1 antagonist. The decrease in theta power correlated with memory impairment in a hippocampus-dependent task. By simultaneously recording from large populations of single units, we found that CP55940 severely disrupted the temporal coordination of cell assemblies in short time windows (<100 ms) yet only marginally affected population firing rates of pyramidal cells and interneurons. The decreased power of local field potential oscillations correlated with reduced temporal synchrony but not with firing rate changes. We hypothesize that reduced spike timing coordination and the associated impairment of physiological oscillations are responsible for cannabinoid-induced memory deficits.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Canabinoides/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Ritmo Teta/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Sincronização Cortical/efeitos dos fármacos , Cicloexanos/farmacologia , Cicloexanóis , Dronabinol/farmacologia , Hipocampo/citologia , Periodicidade , Fenóis/farmacologia , Ratos , Receptores de Canabinoides/efeitos dos fármacos , Receptores de Canabinoides/fisiologiaRESUMO
Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term potentiation (LTP) at synapses among spiny neurons (intrinsic striatal circuitry); a postsynaptically dependent long-term depression (LTD) at synapses between spiny and pallidal neurons (indirect pathway); and a presynaptically dependent LTP at strionigral synapses (direct pathway). Interestingly, long-term synaptic plasticity differs at these synapses. The functional consequences of these long-term plasticity variations during learning of procedural memories are discussed.
Assuntos
Gânglios da Base/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Gânglios da Base/citologia , Técnicas In Vitro , Inibição Neural/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Ratos , Ratos Wistar , Potenciais Sinápticos/fisiologiaRESUMO
Perceptual decisions are based on sensory information but can also be influenced by expectations built from recent experiences. Can the impact of expectations be flexibly modulated based on the outcome of previous decisions? Here, rats perform an auditory task where the probability to repeat the previous stimulus category is varied in trial-blocks. All rats capitalize on these sequence correlations by exploiting a transition bias: a tendency to repeat or alternate their previous response using an internal estimate of the sequence repeating probability. Surprisingly, this bias is null after error trials. The internal estimate however is not reset and it becomes effective again after the next correct response. This behavior is captured by a generative model, whereby a reward-driven modulatory signal gates the impact of the latent model of the environment on the current decision. These results demonstrate that, based on previous outcomes, rats flexibly modulate how expectations influence their decisions.
Assuntos
Estimulação Acústica , Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Discriminação Psicológica/fisiologia , Filtro Sensorial/fisiologia , Animais , Mapeamento Encefálico , Masculino , Motivação , Ratos , Ratos Long-Evans , Tempo de Reação/fisiologia , RecompensaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
It has been suggested that sleep has a restorative function; however, experimental support is limited. Hence, we investigated whether changes in the level of antiapoptotic BCL-2 protein and proapoptotic BAX protein occur during sleep deprivation (SD) and sleep rebound, and evaluated the spontaneous changes in these proteins, along the light-dark cycle, in the adult male Wistar rat. Estimations were made in the prefrontal cortex, hippocampus, striatum, and pons. We observed that BCL-2 exhibited diurnal variations in the prefrontal cortex and striatum, whereas BAX varied in the striatum and showed only small variations in the pons as measured by immunoblotting. The BCL-2/BAX ratio exhibited diurnal variations in the prefrontal cortex and striatum. BCL-2 and BAX levels were affected by 24 hr of total SD and 24 hr of sleep rebound. SD decreased the BCL-2/BAX ratio in the prefrontal cortex and pons. Sleep rebound increased the BCL-2/BAX ratio in the hippocampus. In conclusion, the BCL-2/BAX ratio is high during the dark phase as compared with the light phase in the prefrontal cortex and during the light phase as compared with the dark phase in the striatum. SD decreased the BCL-2/BAX ratio in the prefrontal cortex and pons, whereas sleep rebound increased it in the hippocampus. These changes point out structures in the brain that express these proteins as a response to the light-dark cycle. Similarly, SD and sleep rebound seem to change these proteins expression in some other brain structures, suggesting that cellular vulnerability might be altered by these changes.
Assuntos
Encéfalo/metabolismo , Ritmo Circadiano , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Privação do Sono/metabolismo , Proteína X Associada a bcl-2/metabolismo , Análise de Variância , Animais , Western Blotting , Corpo Estriado/fisiopatologia , Densitometria , Hipocampo/fisiopatologia , Luz , Masculino , Ponte/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar , Sono/fisiologiaRESUMO
Previous studies indicate that the dorsolateral striatum (DLS) integrates sensorimotor information from cortical and thalamic regions to learn and execute motor habits. However, the exact contribution of sensory representations to this process is still unknown. Here we explore the role of the forelimb somatosensory flow in the DLS during the learning and execution of motor habits. First, we compare rhythmic somesthetic representations in the DLS and primary somatosensory cortex in anesthetized rats, and find that sequential and temporal stimuli contents are more strongly represented in the DLS. Then, using a behavioral protocol in which rats developed a stereotyped motor sequence, functional disconnection experiments, and pharmacologic and optogenetic manipulations in apprentice and expert animals, we reveal that somatosensory thalamic- and cortical-striatal pathways are indispensable for the temporal component of execution. Our results indicate that the somatosensory flow in the DLS provides the temporal reference for the development and execution of motor habits.
Assuntos
Aprendizagem , Atividade Motora/fisiologia , Neostriado/fisiologia , Sensação/fisiologia , Animais , Membro Anterior/fisiologia , Rede Nervosa/fisiologia , Optogenética , Ratos Long-Evans , Fatores de TempoRESUMO
The dorsolateral striatum (DLS) has been implicated in the learning of habits and procedural memories. Extinction of this kind of memories has been poorly studied. The DLS expresses high levels of the cannabinergic receptor one (CB1), and, lately, it has been suggested that the activation of CB1 in this structure is indispensable for long-term depression (LTD) development. We performed experiments in a T-maze and evaluated the effects of intrastriatal and intrahipocampal administration of the CB1 antagonist AM251 on extinction and on c-Fos expression. We also administered anandamide to evaluate if an artificial increase of endocannabinoids facilitates extinction. Our results indicate clearly a dose-response blockade of extinction induced by AM251 injected into the striatum but a facilitation of extinction when administered into the hippocampus. Anandamide did not induce any observable changes. AM251 effects were accompanied by an increase in c-Fos immunoreactivity in the DLS and its decrease in the hippocampal region, suggesting that the activation of CB1 in the striatum is necessary for the extinction of procedural memories. These findings could be important in some neurological conditions, such as obsessive-compulsive disorder in which striatal activity seems to be abnormal.
Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Corpo Estriado/metabolismo , Endocanabinoides , Extinção Psicológica/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Moduladores de Receptores de Canabinoides/farmacologia , Corpo Estriado/efeitos dos fármacos , Esquema de Medicação , Extinção Psicológica/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Wistar , Estatística como AssuntoRESUMO
RATIONALE: One of the adaptive abilities of the brain is the generation of a strategy to optimize acquisition of information, i.e., learning. In this study, we explored the role of environmental conditions (the light-dark cycle) and of the endocannabinoid anandamide in rats to select a strategy to solve the Barnes maze (BM). OBJECTIVES: To determine the effects of manipulating the cannabinergic system on a spatial task in relation to the light-dark cycle. MATERIALS AND METHODS: Rats received an intrahippocampal or intrastriatal administration of anandamide, AM251, or their combination at two different points of the light-dark cycle (1300 and 0100 hours), and their performance in the BM was evaluated. In addition, we determined the expression of the cannabinoid 1 receptor (CB1R) in the hippocampus and striatum throughout the light-dark cycle. RESULTS: Results indicate that rats solved the BM by using a spatial strategy during the light phase and a procedural (serial) strategy during the dark phase of the cycle. CB1R expression varied in the hippocampus, being higher at 1300 hours and lower at 0100 hours, whereas its expression remained unchanged in the striatum. CONCLUSIONS: Changes in the brain, which include changes in the endocannabinoid system, prompt it to use different strategies (spatial and procedural, or others not evaluated in this study) to cope with the environmental demands. These cerebral changes are adaptive responses to the light-dark cycle.
Assuntos
Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Aprendizagem em Labirinto/efeitos dos fármacos , Orientação/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Animais , Ácidos Araquidônicos/administração & dosagem , Western Blotting , Ritmo Circadiano/efeitos dos fármacos , Escuridão , Hipocampo/fisiologia , Imuno-Histoquímica , Luz , Masculino , Microinjeções , Neostriado/fisiologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/administração & dosagem , Pirazóis/administração & dosagem , Pirazóis/farmacologia , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
A popular hypothesis is that the dorsal striatum generates discrete "traffic light" signals that initiate, maintain, and terminate the execution of learned actions. Alternatively, the striatum may continuously monitor the dynamics of movements associated with action execution by processing inputs from somatosensory and motor cortices. Here, we recorded the activity of striatal neurons in mice performing a run-and-stop task and characterized the diversity of firing rate modulations relative to run performance (tuning curves) across neurons. We found that the tuning curves could not be statistically clustered in discrete functional groups (start or stop neurons). Rather, their shape varied continuously according to the movement dynamics of the task. Moreover, striatal spiking activity correlated with running speed on a run-by-run basis and was modulated by task-related non-locomotor movements, such as licking. We hypothesize that such moment-to-moment movement monitoring by the dorsal striatum contributes to the learning of adaptive actions and/or updating their kinematics.