Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Geophys Res Lett ; 46(5): 2984-2992, 2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31217646

RESUMO

The NASA Cyclone Global Navigation Satellite System (CYGNSS) was launched in December 2016, providing an unprecedented opportunity to obtain ocean surface wind speeds including wind estimates over the hurricane inner-core region. This study demonstrates the influence of assimilating an early version of CYGNSS observations of ocean surface wind speeds on numerical simulations of two notable landfalling hurricanes, Harvey and Irma (2017). A research version of the National Centers for Environmental Prediction operational Hurricane Weather Research and Forecasting model and the Gridpoint Statistical Interpolation-based hybrid ensemble three-dimensional variational data assimilation system are used. It is found that the assimilation of CYGNSS data results in improved track, intensity, and structure forecasts for both hurricane cases, especially for the weak phase of a hurricane, implying potential benefits of using such data for future research and operational applications.

2.
Sci Rep ; 8(1): 8782, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884899

RESUMO

A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean, and soil moisture and flooding over land. The satellites are distributed around their orbit plane so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars' transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa