Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Eur J Appl Physiol ; 124(3): 849-859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37728787

RESUMO

PURPOSE: Caffeine is a stimulant with well-recognized performance and metabolic benefits, however, there is a lack of studies investigating the time-of-day influence in the properties of caffeine to enhance fat oxidation in women. Thus, the aim of the present study was to evaluate the influence of the time of the day on the effect of caffeine on the maximal rate of fat oxidation during aerobic exercise in trained women. METHODS: Fourteen female athletes (25.5 ± 7.1 years) took part in a randomized, crossover, double-blind study. All participants undertook four different experimental trials combining the ingestion of 3 mg/kg caffeine and a placebo either in the morning (8.00-10.00 h) and in the evening (17.00-19.00 h) realizing an incremental test on a cycle ergometer with 3 min stages at workloads from 30 to 70% of maximal oxygen uptake (VO2max). Substrate oxidation rates were measured by indirect calorimetry. In each trial, the maximum rate of fat oxidation (MFO) and the intensity that elicited MFO (Fatmax) were measured. RESULTS: In comparison to placebo, MFO was significantly higher with caffeine both in the morning (0.24 ± 0.13 vs 0.30 ± 0.14 g/min; p < 0.001; ES = 0.79) and in the evening (0.21 ± 0.08 vs 0.28 ± 0.10 g/min; p = 0.002; ES = 0.72). No time-of-day effect on the capacity of caffeine to increase MFO was found (all p = 0.336) CONCLUSION: The intake of 3 mg/kg of caffeine increased the use of fat as a fuel during exercise independently of the time-of-day in trained women. TRIAL REGISTRATION: The study was registered in ClinicalTrials.gov with the following ID: NCT05880186 by 15 May 2023.


Assuntos
Tecido Adiposo , Cafeína , Humanos , Feminino , Cafeína/farmacologia , Método Duplo-Cego , Tecido Adiposo/metabolismo , Oxirredução , Exercício Físico , Teste de Esforço , Consumo de Oxigênio , Calorimetria Indireta
2.
Eur J Nutr ; 62(1): 311-319, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35972531

RESUMO

PURPOSE: The effect of caffeine to enhance fat utilisation as fuel for submaximal aerobic exercise is well established. However, it is unknown whether this effect is dose dependent. The aim of this study was to investigate the effect of 3 and 6 mg of caffeine per kg of body mass (mg/kg) on whole-body substrate oxidation during an incremental cycling exercise test. METHODS: In a double-blind, randomised, and counterbalanced experiment, 18 recreationally active males (maximal oxygen uptake [VO2max] = 56.7 ± 8.2 mL/kg/min) performed three experimental trials after ingesting either 3 mg/kg of caffeine, 6 mg/kg of caffeine or a placebo (cellulose). The trials consisted of an incremental exercise test on a cycle ergometer with 3-min stages at workloads from 30 to 80% of VO2max. Energy expenditure, fat oxidation rate, and carbohydrate oxidation rate were continuously measured by indirect calorimetry. RESULTS: During exercise, there was significant effect of substance (F = 7.969; P = 0.004) on fat oxidation rate. In comparison to the placebo, the rate of fat oxidation was higher with 3 mg/kg of caffeine at 30, 40, 50 and 70% of VO2max [all P < 0.050, effect sizes (ES) from 0.38 to 0.50] and with 6 mg/kg of caffeine at 30, 40, 50, 60 and 70% of VO2max (all P < 0.050, ES from 0.28 to 0.76). Both 3 mg/kg (0.40 ± 0.21 g/min, P = 0.021, ES = 0.57) and 6 mg/kg of caffeine (0.40 ± 0.17 g/min P = 0.001, ES = 0.60) increased the maximal rate of fat oxidation during exercise over the placebo (0.31 ± 0.15 g/min). None of the caffeine doses produced any significant effect on energy expenditure or heart rate during exercise, while both caffeine doses reduced perceived fatigue at 80% of VO2max (all P < 0.050, ES from 0.71 to 1.48). CONCLUSION: The effect of caffeine to enhance fat oxidation during submaximal aerobic exercise is of similar magnitude with 3 and 6 mg of caffeine per kg of body mass. Thus, a dose of 3 mg of caffeine per kg of body mass would be sufficient to enhance fat utilisation as fuel during submaximal exercise.


Assuntos
Cafeína , Exercício Físico , Masculino , Humanos , Cafeína/farmacologia , Exercício Físico/fisiologia , Oxirredução , Metabolismo Energético , Teste de Esforço , Método Duplo-Cego , Consumo de Oxigênio/fisiologia
3.
Biol Sport ; 40(3): 827-834, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37398977

RESUMO

The aim of this study was to investigate the effect of 3 and 6 mg of caffeine per kg of body mass (mg/kg) on whole-body substrate oxidation during an incremental cycling exercise test in healthy active women. Using a double-blind placebo-controlled counterbalanced experimental design, 14 subjects performed three identical exercise trials after the ingestion of 3 or 6 mg/kg of caffeine or placebo. The exercise trials consisted of an incremental test on a cycle ergometer with 3-min stages at workloads from 30 to 70% of maximal oxygen uptake (VO2max). Substrate oxidation rates were measured by indirect calorimetry. During exercise, there was a significant effect of substance (F = 5.221; p = 0.016) on fat oxidation rate. In comparison to the placebo, 3 mg/kg of caffeine increased fat oxidation rates at 30 to 60% of VO2max (all p < 0.050) and 6 mg/kg at 30 to 50% of VO2max (all p < 0.050). There was also a significant effect of substance (F = 5.221; p = 0.016) on carbohydrate oxidation rate (F = 9.632; p < 0.001). In comparison to placebo, both caffeine doses decreased carbohydrate oxidation rates at 40 to 60% VO2max (all p < 0.050). The maximal rate of fat oxidation with placebo was 0.24 ± 0.03 g/min, which increased with 3 mg/kg to 0.29 ± 0.04 g/min (p = 0.032) and to 0.29 ± 0.03 with 6 mg/kg of caffeine (p = 0.042). Acute intake of caffeine improves the utilization of fat as a fuel during submaximal aerobic exercise in healthy active women with an effect of similar magnitude after the intake of 3 and 6 mg of caffeine per kg of body mass. Thus, the use of 3 mg/kg of caffeine would be more recommended than 6 mg/kg for women seeking increased fat utilization during submaximal exercise.

4.
Eur J Nutr ; 61(6): 3109-3117, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35366092

RESUMO

PURPOSE: The ergogenic effect of oral caffeine administration on short-term all-out exercise performance is well established. However, the potential mechanisms associated with caffeine's ergogenicity in this type of exercise are poorly understood. The aim of this study was to investigate whether caffeine intake modifies muscle oxygen saturation during the 15-s Wingate Anaerobic Test. METHODS: Fifteen moderately trained individuals (body mass = 67.4 ± 12.3 kg; height 171.3 ± 6.9 cm; age 31 ± 6 years) took part in two identical experimental trials after the ingestion of (a) 3 mg/kg of caffeine or (b) 3 mg/kg of cellulose (placebo). After 60 min for substances absorption, participants performed a 15-s Wingate test on a cycle ergometer against a load representing 7.5% of participant's body mass. Muscle oxygen saturation was continuously measured during exercise with near-infrared spectroscopy and blood lactate concentration was measured 1 min after exercise. RESULTS: In comparison to the placebo, the oral administration of caffeine increased peak power by 2.9 ± 4.5% (from 9.65 ± 1.38 to. 9.92 ± 1.40 W/kg, P = 0.038; effect size (ES), 95% confidence intervals = 0.28, 0.05-0.51), mean power by 3.5 ± 6.2% (from 8.30 ± 1.08 to 8.57 ± 1.12 W/kg, P = 0.044; ES = 0.36, 0.01-0.71) and blood lactate concentration by 20.9 ± 24.7% (from 12.4 ± 2.6 to 14.8 ± 4.0 mmol/L, P = 0.005; ES = 0.59, 0.16-1.02). However, caffeine did not modify the curve of muscle oxygen desaturation during exercise (lowest value was 23.1 ± 14.1 and 23.4 ± 14.1%, P = 0.940). CONCLUSION: Caffeine's ergogenic effect during short-term all-out exercise seems to be associated with an increased glycolytic metabolism with no influence of enhanced muscle oxygen saturation.


Assuntos
Cafeína , Substâncias para Melhoria do Desempenho , Adulto , Cafeína/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Humanos , Lactatos/farmacologia , Músculo Esquelético , Saturação de Oxigênio , Substâncias para Melhoria do Desempenho/farmacologia
5.
Eur J Nutr ; 61(6): 3285-3292, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35503131

RESUMO

AIM: Oral caffeine intake has been deemed as an effective supplementation strategy to enhance fat oxidation during aerobic exercise with a steady-state intensity. However, in real exercise scenarios, individuals habitually train with autoregulation of exercise intensity. This study aimed to analyze the effect of oral caffeine intake during self-paced cycling on autoregulated exercise intensity and substrate oxidation. METHODS: Fifteen young and healthy participants (11 men and 4 women) participated in a double-blind, randomized, cross-over investigation. Each participant took part in 2 experimental days consisting of pedaling for 1 h with a self-selected wattage. Participants were told that they had to exercise at a moderate intensity to maximize fat oxidation. On one occasion participants ingested 3 mg/kg of caffeine and on the other occasion ingested a placebo. Energy expenditure, fat oxidation rate, and carbohydrate oxidation rate were continuously measured during exercise by indirect calorimetry. RESULTS: In comparison to the placebo, caffeine intake increased the self-selected wattage (on average, 105 ± 44 vs 117 ± 45 W, respectively, P < 0.001) which represented a higher total work during the cycling session (377 ± 157 vs 422 ± 160 kJ, P < 0.001). Caffeine increased total energy expenditure (543 ± 161 vs 587 ± 155 kcal, P = 0.042) but it did not affect total fat oxidation (24.7 ± 12.2 vs 22.9 ± 11.5 g, P = 0.509) or total carbohydrate oxidation (87.4 ± 22.4 vs 97.8 ± 32.3 g, P = 0.101). CONCLUSION: Acute caffeine ingestion before an exercise session with an individual's freedom to regulate intensity induces a higher self-selected exercise intensity and total work. The selection of a higher exercise intensity augments total energy expenditure but eliminates the effect of caffeine on substrate oxidation during exercise.


Assuntos
Cafeína , Metabolismo Energético , Cafeína/farmacologia , Calorimetria Indireta , Estudos Cross-Over , Carboidratos da Dieta , Método Duplo-Cego , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Oxirredução
6.
Eur J Nutr ; 60(4): 2077-2085, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33025051

RESUMO

PURPOSE: The ergogenic effect of caffeine on exercise of maximum intensity has been well established. However, there is controversy regarding the effect of caffeine on shifting substrate oxidation at submaximal exercise. The aim of this study was to investigate the effect of acute caffeine ingestion on whole-body substrate oxidation during 1 h of cycling at the intensity that elicits maximal fat oxidation (Fatmax). METHODS: In a double-blind, randomized, and counterbalanced experiment, 12 healthy participants (VO2max = 50.7 ± 12.1 mL/kg/min) performed two acute experimental trials after ingesting either caffeine (3 mg/kg) or a placebo (cellulose). The trials consisted of 1 h of continuous cycling at Fatmax. Energy expenditure, fat oxidation rate, and carbohydrate oxidation rate were continuously measured by indirect calorimetry. RESULTS: In comparison to the placebo, caffeine increased the amount of fat oxidized during the trial (19.4 ± 7.7 vs 24.7 ± 9.6 g, respectively; P = 0.04) and decreased the amount of carbohydrate oxidized (94.6 ± 30.9 vs 73.8 ± 32.4 g; P = 0.01) and the mean self-perception of fatigue (Borg scale = 11 ± 2 vs 10 ± 2 arbitrary units; P = 0.05). In contrast, caffeine did not modify total energy expenditure (placebo = 543 ± 175; caffeine = 559 ± 170 kcal; P = 0.60) or mean heart rate (125 ± 13 and 127 ± 9 beats/min; P = 0.30) during exercise. Before exercise, caffeine increased systolic and diastolic blood pressure whilst it increased the feelings of nervousness and vigour after exercise (P < 0.05). CONCLUSION: These results suggest that a moderate dose of caffeine (3 mg/kg) increases the amount of fat oxidized during 1 h of cycling at Fatmax. Thus, caffeine might be used as an effective strategy to enhance body fat utilization during submaximal exercise. The occurrence of several side effects should be taken into account when using caffeine to reduce body fat in populations with hypertension or high sensitivity to caffeine.


Assuntos
Cafeína , Metabolismo Energético , Tecido Adiposo/metabolismo , Calorimetria Indireta , Método Duplo-Cego , Humanos , Oxirredução , Consumo de Oxigênio
7.
Br J Clin Pharmacol ; 86(4): 745-752, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31747465

RESUMO

AIMS: In male athletes, caffeine is considered an ergogenic aid to increase anaerobic performance during the Wingate anaerobic test (WANT). However, information about the effect of caffeine on WANT performance in female athletes is contradictory. Furthermore, it is unknown whether the ergogenicity of caffeine is present during all the phases of the menstrual cycle. The aim of this study was to investigate the effects of caffeine intake on WANT performance during 3 phases of the menstrual cycle. METHODS: Thirteen well-trained eumenorrhoeic triathletes participated in a double-blind, placebo-controlled, cross-over experimental trial. On 2 different days in each phase, and in randomized order, participants ingested caffeine (3 mg kg-1 ) or a placebo (cellulose). The menstrual cycle phases were individually characterized as follows: (i) early follicular; (ii) preovulatory; and (iii) midluteal. In each trial, participants performed a 15-s adapted version of the WANT. RESULTS: In comparison to the placebo, caffeine increased peak power during the WANT in the early follicular (8.6 ± 0.8 vs 8.9 ± 0.9 W/kg, P = .04; effect size [d] = 0.45), preovulatory (8.6 ± 0.9 vs 8.9 ± 0.9 W/kg, P = .04; d = 0.23) and mid-luteal phases (8.6 ± 0.8 vs 8.9 ± 0.9 W/kg, P < .01; d = 0.52). CONCLUSION: The ergogenic effect of caffeine on WANT peak cycling power was of a similar magnitude in the follicular, preovulatory, and mid-luteal phases. These results suggest that caffeine increases performance in the 15-s Wingate test in women athletes and it might be considered an ergogenic aid to increase anaerobic performance in eumenorrhoeic women during their menstrual cycle.


Assuntos
Cafeína , Substâncias para Melhoria do Desempenho , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Ciclo Menstrual
8.
Br J Clin Pharmacol ; 86(5): 861-867, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31782534

RESUMO

AIMS: The main mechanism behind caffeine's ergogenicity lies in its tendency to bind to adenosine receptors, although other mechanisms might be involved. The aim of this investigation was to analyse the effects of caffeine on muscle oxygen saturation during exercise of increasing intensity. METHODS: Thirteen healthy and active individuals volunteered to participate in a randomized, double blind, placebo-controlled crossover trial. During 2 different trials, participants either ingested a placebo (cellulose) or 3 mg/kg of caffeine. After waiting for 60 min to absorb the substances, participants underwent a maximal ramp cycle ergometer test (25 W/min). Near infrared spectrometers were positioned on each leg's vastus lateralis to monitor tissue O2 saturation. Blood lactate concentration was measured 1 min after the end of the exercise test. RESULTS: In comparison to the placebo, the ingestion of caffeine improved the maximal wattage (258 ± 50 vs 271 ± 54 W, respectively, P < .001, effect size [ES] = 0.27; 95% confidence interval [CI] 0.14-0.35) and blood lactate concentration (11.9 ± 3.8 vs 13.7 ± 3.5 mmol/L, P = .029, ES = 0.38; 95% CI 0.14-0.75) at the end of the test. Caffeine increased muscle oxygen saturation at several exercise workloads with a main effect found in respect to the placebo (F = 6.28, P = .029; ES = 0.30 to 0.54; 95% CI 0.01-0.78). Peak pulmonary ventilation (124 ± 29 vs 129 ± 23 L/min, P = 0.035, ES = 0.25; 95% CI 0.07-0.40) and peak oxygen uptake (3.18 ± 0.70 vs 3.33 ± 0.88 L/min, P = 0.032, ES = 0.26; 95% CI 0.08-0.51) were also increased with caffeine. CONCLUSION: Acute ingestion of 3 mg/kg of caffeine improved peak aerobic performance and increased peak pulmonary ventilation. In addition, caffeine induced changes in muscle oxygen saturation during submaximal workloads, suggesting that this mechanism might also contribute to caffeine's ergogenic effect.


Assuntos
Cafeína , Teste de Esforço , Oxigênio , Adulto , Ciclismo , Cafeína/farmacologia , Método Duplo-Cego , Ingestão de Alimentos , Feminino , Humanos , Músculo Esquelético/fisiologia , Oxigênio/metabolismo
9.
Eur J Nutr ; 59(7): 3341-3345, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31691018

RESUMO

PURPOSE: p-Synephrine, the principal alkaloid of bitter orange (Citrus aurantium), is widely used in dietary supplements for weight loss due to its purported effect of increasing fat oxidation. However, there is a paucity of scientific information about its effectiveness in enhancing fat oxidation during exercise. The aim of this investigation was to determine the effect of an acute dose of p-synephrine on substrate oxidation during prolonged and constant intensity exercise. METHODS: In a double-blind and randomized experiment, 14 healthy subjects performed two acute experimental trials after ingesting either p-synephrine (3 mg kg-1) or a placebo (cellulose). Energy expenditure and fat oxidation rates were continuously measured by indirect calorimetry during 1 h of continuous cycling at Fatmax, the intensity that induces maximal fat oxidation rate. RESULTS: In comparison to the placebo, energy expenditure during 1 h of cycling remained unchanged with p-synephrine (698 ± 129 vs. 686 ± 123 kcal, P = 0.08). However, p-synephrine increased whole-body fat oxidation (33.6 ± 10.4 vs. 37.3 ± 9.8 g, P < 0.01) while also reducing carbohydrate oxidation (99.5 ± 30.4 vs. 85.0 ± 28.4 g, P < 0.01). However, the magnitude of the shift on substrate oxidation induced by p-synephrine was small. CONCLUSION: Acute ingestion of p-synephrine augments fat oxidation during prolonged and constant-intensity exercise.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Ciclismo/fisiologia , Exercício Físico/fisiologia , Sinefrina/administração & dosagem , Sinefrina/farmacologia , Adulto , Citrus/química , Ingestão de Alimentos , Metabolismo Energético , Humanos , Oxirredução/efeitos dos fármacos , Sinefrina/química
10.
Eur J Nutr ; 59(7): 3293-3302, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31900579

RESUMO

PURPOSE: This study aimed to identify and describe the time course of tolerance to the most common caffeine-induced side effects. METHODS: Eleven participants took part in a crossover, double-blind placebo-controlled experimental design. In one phase, participants ingested 3 mg/kg/day of caffeine for 20 days, while in another phase, they ingested a placebo. Resting heart rate and blood pressure were measured three times per week during each 20-day phase and a quantitative survey was used to categorise the magnitude of side effects. RESULTS: In the pairwise comparison with the placebo, the ingestion of caffeine increased systolic (+ 7.8 ± 10.1%, P < 0.05) and diastolic blood pressure (+ 6.4 ± 12.9% P < 0.05) for the first 8 days of ingestion, but then this effect became attenuated for both outcomes (on day 20, - 1.1 ± 4.3% and + 0.9 ± 9.6%, respectively). The ingestion of caffeine did not affect heart rate at any time point. Caffeine increased the feelings of nervousness and vigour and the rating of gastrointestinal complaints, insomnia and diuresis at several time points in the treatment (P < 0.05) and they did not disappear after 20 days of ingestion. CONCLUSIONS: The daily intake of 3 mg/kg of caffeine induced a meaningful elevation in arterial blood pressure that disappeared after 8 days. However, other caffeine-induced effects such as increased nervousness and vigour, irritability, insomnia and diuresis remained after 20 days of consecutive caffeine ingestion. Although there was clear tolerance to the effect of caffeine on blood pressure, the persistence of other side effects suggests the inconvenience of maintaining a chronic caffeine intake, at least at the dose of 3 mg/kg/day.


Assuntos
Cafeína/administração & dosagem , Cafeína/efeitos adversos , Adulto , Pressão Sanguínea/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Frequência Cardíaca/efeitos dos fármacos , Humanos , Fatores de Tempo
11.
Healthcare (Basel) ; 12(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667628

RESUMO

INTRODUCTION: The increasing prevalence of high-intensity sports activities, notably the burgeoning popularity of CrossFit, underscores the contemporary significance of such physical pursuits. The discernible protective impact of branched-chain amino acids on muscle fatigue and injuries is emerging as a noteworthy area of investigation. Within the realm of sports, integrating BCAA supplementation into dietary practices holds promise for aiding athletes in their recovery, particularly in mitigating Delayed-Onset Muscle Soreness. METHODOLOGY: This study adopted an experimental pilot design with repeated measures, employing a controlled and randomized approach through double-blind procedures. The participant engaged in high-intensity activity, specifically the CrossFit Karen® test, which entailed executing 150 wall ball throws (9 kg) to a height of 3 m. The trial incorporated three randomized supplementation conditions: BCAAs in an 8:1:1 ratio or a 2:1:1 ratio or a placebo condition. The participant consumed 15 g daily for 7 days, commencing 72 h prior to the initial blood sample and the first Karen® test. RESULTS: In this study, BCAA supplementation at an 8:1:1 ratio demonstrated a discernible protective effect against muscular damage, as evidenced by creatine kinase values and ratings of perceived exertion.

12.
Eur J Sport Sci ; 23(6): 936-942, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35437101

RESUMO

Maximal fat oxidation during exercise (MFO) and the intensity that elicits MFO (Fatmax) seems to show a diurnal variation in men, which favours an increased performance in the afternoon than the morning. At present, it remains unknown whether the observed MFO and Fatmax diurnal variation in men is also present in women. Therefore, the current study examined the diurnal variations of MFO and Fatmax in women. Nineteen healthy women (age: 26.9 ± 8.7 years, maximum oxygen uptake: 39.8 ± 6.5 ml/kg/min) participated in the study. MFO and Fatmax were determined by a graded exercise test in cycloergometer using a cross-over design performed on two separate daytime schedules, one conducted in the morning (8am-11am) and one in the afternoon (5pm-8pm). Stoichiometric equations were used to calculate fat oxidation rates. There were no significant differences between MFO-morning and MFO-afternoon (0.24 ± 0.10 vs. 0.23 ± 0.07 g/min, respectively; P = 0.681). Similarly, there was no significant differences between Fatmax-morning and Fatmax-afternoon (41.1 ± 4.7 vs. 42.6 ± 5.5% of maximal oxygen uptake, respectively; P = 0.305). These results persisted after controlling for fat mass percentage (all P > 0.5). In summary, the main finding of the present study was that MFO and Fatmax were similar independent of the time-of-day when the exercise test is performed in healthy women. These results have important clinical implications since they suggest that, in contrast to what was found in men, MFO and Fatmax show similar rates during the course of the day in women.HighlightsMFO and Fatmax were similar during the afternoon and morning in young healthy women.Our results suggest that, in women, it does not matter when endurance exercise is performed in term of fat metabolism during exercise.


Assuntos
Tecido Adiposo , Consumo de Oxigênio , Masculino , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Estudos Cross-Over , Tecido Adiposo/metabolismo , Calorimetria Indireta , Oxigênio/metabolismo , Oxirredução , Teste de Esforço
13.
Int J Exerc Sci ; 15(2): 645-654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992183

RESUMO

The placebo effect of caffeine has been poorly investigated in endurance exercise. Therefore, the aim of this study was to analyze the placebo effect of caffeine on 4 km running performance in amateur runners. Twenty-two healthy and recreational male runners (25.5 ± 8.4 yrs; 75.0 ± 7.1 kg; 173.7 ± 6.3 cm) underwent a deceptive experimental design consisting of three different sessions: a) control (CON) in which participants did not ingest any substance; b) placebo (PLA) in which participants ingested a capsule filled with maltodextrin but they were informed that they would receive caffeine; c) caffeine (CAF) in which participants were informed that they would receive caffeine and actually received caffeine. After 60 min for substances absorption, participants performed a 4-km test and they completed the distance as fast as possible. The time employed to cover the distance was lower in PLA (17.4 ± 1.5 min) and CAF (17.4 ± 1.4 min) than CON sessions (18.6 ± 2.8 min; P<0.05). There were no differences in the 4-km times between PLA and CAF (P>0.05) and no differences were reported between treatments for RPE (P>0.05). In conclusion, there was a placebo effect of caffeine on a 4-km maximal running trial which entailed that believing to have ingested caffeine improved performance to a similar extent than actually receiving caffeine. Therefore, the expectancy induced by caffeine may be one of the mechanisms behinds the ergogenic effect of this stimulant on endurance exercise.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35682176

RESUMO

Workers spend a large amount of time working, limiting the possibility of meeting physical activity (PA) guidelines. A better health-related quality of life (HRQoL) provides benefits for the employee and company. The aim of this study was to analyse the associations of four behavioural categories between compliance with PA guidelines (aerobic and strength training) and sedentary time with workers' HRQoL. We classified the sample into four categories: (1) "Physically active & low sedentary", (2) "Physically active & high sedentary", (3) "Physically inactive & low sedentary", and (4) "Physically inactive & high sedentary". Student's t-tests for two independent samples and a multiple linear regression adjusted for covariates were performed. A total of 1004 employees of the multinational company Grupo Red Eléctrica participated. Compliance with PA guidelines and a low level of sedentarism were associated with higher HRQoL (p < 0.001). Compared to "physically inactive & high sedentary", "physically active & low sedentary" and "physically active & high sedentary" workers obtained a better HRQoL (B = 5.47; p = 0.006 and B = 4.10; p = 0.003; respectively). In this sample of Spanish workers, being physically active was associated with a better HRQoL, even in those with high sedentary time. Experimental studies are needed to confirm our results.


Assuntos
Qualidade de Vida , Comportamento Sedentário , Estudos Transversais , Exercício Físico , Humanos , Análise Multivariada
15.
Nutrients ; 14(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35277034

RESUMO

The effects of caffeine were investigated in judo, boxing, taekwondo and Brazilian jiu-jitsu. However, this substance was never investigated regarding traditional jiu-jitsu. Therefore, the aim of this research was to analyze the effects of caffeine in the Special Judo Fitness Test (SJFT) and technical variables during combat in traditional jiu-jitsu elite athletes. Methods: Twenty-two young professionals of traditional jiu-jitsu, 11 men and 11 women (age = 22 ± 4 (18−33) years, body mass = 66.6 ± 10.8 (46.2−86.1) kg, height = 1.70 ± 0.9 (1.55−1.85) m) with 15 ± 7 years of experience in traditional jiu-jitsu, participated in a double-blind, counterbalanced, crossover study. In two different conditions, the traditional jiu-jitsu athletes ingested 3 mg/kg body mass of caffeine or a placebo. After 60 min, they performed the SJFT test to measure throwing performance, and subsequently, combat to analyze offensive and defensive hitting techniques. Results: Caffeine had a main effect on the number of throws during the SJFT test (P < 0.01). In addition, it was effective in sets 2 (13 ± 2 vs. 14 ± 2; p = 0.01) and 3 (12 ± 2 vs. 13 ± 1; p = 0.03). There was also a main effect during the test on heart rate when caffeine was ingested (F = 12.48, p < 0.01). The effects of caffeine were similar compared to the placebo condition regarding performance during combat both in offensive and defensive fighting variables Conclusions: the pre-exercise ingestion of 3 mg/kg body mass of caffeine increased performance in the SJFT test, decreased fatigue perception, and increased power and endurance perception in professionally traditional jiu-jitsu athletes. However, it did not seem to improve offensive and defensive technical actions during combat.


Assuntos
Cafeína , Artes Marciais , Adolescente , Adulto , Atletas , Cafeína/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Exercício Físico , Feminino , Humanos , Masculino , Artes Marciais/fisiologia , Adulto Jovem
16.
Nutrients ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501060

RESUMO

p-Synephrine is deemed a safe and effective substance to increase fat utilization during exercise of low-to-moderate intensity in men but not in women. Additionally, the existence of a diurnal variation in substrate utilization has been documented during exercise with enhanced fat oxidation in the evening compared with early morning. However, it remains unknown whether there is an interaction between the effect of p-synephrine and the time of the day on fat oxidation during exercise. This study aimed to evaluate the effect of the acute ingestion of 3 milligram of p-synephrine per kilogram of body mass (mg/kg) on fat oxidation during exercise of increasing intensity when the exercise is performed in the morning vs. the evening. Using a randomized, double-blind, placebo-controlled experimental design, 16 healthy and active women performed four identical exercise trials after the ingestion of 3 mg/kg of p-synephrine and 3 mg/kg of a placebo (cellulose) both in the morning (8-10 am) and in the evening (5-7 pm). In the exercise trials, the substances were ingested 60 min before an incremental test on a cycle ergometer with 3 min stages at workloads from 30 to 80% of maximal oxygen uptake (VO2max). Substrate oxidation rates were measured by indirect calorimetry. In each trial, the maximum rate of fat oxidation (MFO) and the intensity that elicited MFO (Fatmax) were measured. A two-way analysis of variance (time-of-the day × substance) was used to detect differences among the trials. With the placebo, MFO was 0.25 ± 0.11 g/min in the morning and 0.24 ± 0.07 g/min in the evening. With p-synephrine, MFO was 0.26 ± 0.09 g/min in the morning and 0.21 ± 0.07 g/min in the evening. There was no main effect of substance (p = 0.349), time of day (p = 0.186) and the substance × time of day (p = 0.365) on MFO. Additionally, Fatmax was reached at a similar exercise intensity with the placebo (41.33 ± 8.34% VO2max in the morning and 44.38 ± 7.37% VO2max in the evening) and with p-synephrine (43.33 ± 7.24% VO2max in the morning and 45.00 ± 7.43% VO2max in the evening), irrespective of the time of day with no main effect of substance (p = 0.633), time of day (p = 0.191), or interaction (p = 0.580). In summary, the acute intake of 3 mg/kg of p-synephrine before exercise did not increase MFO and Fatmax, independently of the time of day, in female athletes. This indicates that the time of day is not a factor explaining the lack of effectiveness of this substance to enhance fat oxidation during aerobic exercise in women.


Assuntos
Exercício Físico , Sinefrina , Masculino , Humanos , Feminino , Método Duplo-Cego , Calorimetria Indireta , Oxirredução , Teste de Esforço , Consumo de Oxigênio , Tecido Adiposo/metabolismo
17.
Nutrients ; 14(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297036

RESUMO

p-Synephrine is the principal alkaloid of bitter orange (Citrus aurantium). Several recent investigations have found that the intake of 2-3 mg/kg of p-synephrine raises fat oxidation rate during exercise of low-to-moderate intensity. However, these investigations have been carried out only with samples of male participants or mixed men/women samples. Therefore, the aim of this investigation was to study the effect of p-synephrine intake on fat oxidation during exercise of increasing intensity in healthy women. Using a double-blind, randomized experiment, 18 healthy recreationally active women performed two identical exercise trials after the ingestion of (a) 3 mg/kg of p-synephrine and (b) 3 mg/kg of a placebo (cellulose). The exercise trials consisted of a ramp test (from 30 to 80% of maximal oxygen uptake; VO2max) on a cycle ergometer while substrate oxidation rates were measured at each workload by indirect calorimetry. In comparison to the placebo, the intake of p-synephrine increased resting tympanic temperature (36.1 ± 0.5 vs. 36.4 ± 0.4 °C p = 0.033, d = 0.87) with no effect on resting heart rate (p = 0.111) and systolic (p = 0.994) and diastolic blood pressure (p = 0.751). During exercise, there was no significant effect of p-synephrine on fat oxidation rate (F = 0.517; p = 0.484), carbohydrate oxidation rate (F = 0.730; p = 0.795), energy expenditure rate (F = 0.480; p = 0.833), heart rate (F = 4.269; p = 0.068) and participant's perceived exertion (F = 0.337; p = 0.580). The maximal rate of fat oxidation with placebo was 0.26 ± 0.10 g/min and it was similar with p-synephrine (0.28 ± 0.08 g/min, p = 0.449, d = 0.21). An acute intake of 3 mg/kg of p-synephrine before exercise did not modify energy expenditure and substrate oxidation during submaximal aerobic exercise in healthy active women. It is likely that the increase in resting tympanic temperature induced by p-synephrine hindered the effect of this substance on fat utilization during exercise in healthy active women.


Assuntos
Citrus , Sinefrina , Feminino , Humanos , Carboidratos , Celulose , Citrus/química , Suplementos Nutricionais , Metabolismo Energético , Exercício Físico/fisiologia , Oxirredução , Oxigênio , Consumo de Oxigênio , Extratos Vegetais/farmacologia , Sinefrina/farmacologia , Método Duplo-Cego
18.
Nutrients ; 13(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467423

RESUMO

The p-synephrine is the principal phytochemical found in bitter orange (Citrus aurantium). This substance is widely included in dietary supplements for weight loss/body fat reduction due to its potential benefits of increasing fat oxidation. For years, p-synephrine-containing dietary supplements have been marketed without proper knowledge of their true effectiveness to enhance fat utilization, especially when combined with exercise. However, the effects of p-synephrine on fat oxidation during exercise have been investigated in the last few years. The aim of the current discussion is to summarize the evidence on the effects of p-synephrine intake on fat oxidation and performance during exercise. Previous investigations have demonstrated that the acute intake of p-synephrine does not modify running sprint performance, jumping capacity, or aerobic capacity. However, the acute intake of p-synephrine, in a dose of 2-3 mg/kg of body mass, has been effective to enhance the rate of fat oxidation during incremental and continuous exercise. This effect has been observed in a range of exercise workloads between 30% and 80% of peak oxygen uptake (VO2peak). The p-synephrine has the ability to increase the maximal rate of fat oxidation during exercise of increasing intensity without affecting the workload at which maximal fat oxidation is obtained (Fatmax). The effect of p-synephrine on fat oxidation is normally accompanied by a concomitant reduction of carbohydrate utilization during exercise, without modifying the energy expended during exercise. The shifting in substrate oxidation is obtained without any effect on heart rate during exercise and the prevalence of adverse effects is negligible. Thus, the acute use of p-synephrine, or p-synephrine-containing products, might offer some benefits for those individuals seeking higher fat utilization during exercise at low to moderate intensities. However, more research is still necessary to determine if the effect of p-synephrine on fat oxidation during exercise is maintained with chronic ingestion, in order to ascertain the utility of this substance in conjunction with exercise programs to produce an effective body fat/weight loss reduction.


Assuntos
Exercício Físico , Sinefrina/farmacologia , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Oxirredução/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/farmacologia , Compostos Fitoquímicos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia , Sinefrina/administração & dosagem , Sinefrina/efeitos adversos
19.
Eur J Sport Sci ; 21(12): 1617-1627, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33135577

RESUMO

Aim: (i) to compare the effects of two different low-volume resistance priming sessions, where the external load is modified on neuromuscular performance after 6 h of rest; and (ii) to identify the effects on psychological readiness in participants with resistance training experience. Methods: Eleven participants (Body mass: 77.0 ± 8.9 kg; Body height: 1.76 ± 0.08 m; Half squat repetition maximum: 139.8 ± 22.4 kg) performed the priming session under three experimental conditions in a randomized and cross-over design during the morning. The control (CON) condition: no resistance training, "optimal load" (OL) condition: two half-squat sets with a velocity loss of around 20% were performed with the "optimal load", and 80% of repetition maximum (80% RM) condition: 2 half-squat sets with a velocity loss of around 20% were performed with the 80% RM. Countermovement jump (CMJ), mean power with OL (MPOL) and 80% RM (MP80RM), and mean velocity with OL (MVOL) and 80% RM (MV80RM) were assessed six hours after the intervention. Subjective readiness was also recorded prior to resistance training and evaluation. Significance was set at p < 0.05. Results: CMJ was higher after the 80% RM intervention than CON (p < 0.001; Δ = 6.5% [3.4-9.5]). MPOL and MVOL seemed to be unaffected by both morning sessions. Higher MP80RM (p = 0.044; Δ = 9.7% [4.0-15.6]; d = 0.24[0.10-0.37]) and MV80RM (p = 0.004; Δ = 8.1% [3.2-13.3]; d = 0.32[0.13-0.52]) after 80% RM than after CON were observed. No effect was observed on psychological readiness. Conclusions: 80% RM priming session increased CMJ height and the capacity to generate power and velocity under a high-load condition without any effect on psychological readiness.


Assuntos
Força Muscular , Treinamento Resistido , Humanos , Postura
20.
Eur J Sport Sci ; 21(8): 1140-1147, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32781920

RESUMO

Aim: The objective of this current research was to compare fat oxidation rates during an incremental cycling exercise test in a temperate vs. hot environment.Methods: Twelve healthy young participants were recruited for a randomised crossover experimental design. Each participant performed a VO2max test in a thermoneutral environment followed by two cycling ramp test trials, one in a temperate environment (18.3°C) and another in a hot environment (36.3°C). The ramp test consisted of 3-min stages of increasing intensity (+10% of VO2max) while gas exchange, heart rate and perceived exertion were measured.Results: During exercise, there was a main effect of the environment temperature on fat oxidation rate (F = 9.35, P = 0.014). The rate of fat oxidation was lower in the heat at 30% VO2max (0.42 ± 0.15 vs.0.37 ± 0.13 g/min; P = 0.042), 60% VO2max (0.37 ± 0.27 vs.0.23 ± 0.23 g/min; P = 0.018) and 70% VO2max (0.22 ± 0.26 vs.0.12 ± 0.26 g/min; P = 0.007). In addition, there was a tendency for a lower maximal fat oxidation rate in the heat (0.55 ± 0.2 vs.0.48 ± 0.2 g/min; P = 0.052) and it occurred at a lower exercise intensity (44 ± 14 vs.38% ± 8% VO2max; P = 0.004). The total amount of fat oxidised was lower in the heat (5.8 ± 2.6 vs 4.6 ± 2.8 g; P = 0.002). The ambient temperature also produced main effects on heart rate (F = 15.18, P = 0.005) and tympanic temperature (F = 25.23, P = 0.001) with no effect on energy expenditure (F = 0.01, P = 0.945).Conclusion: A hot environment notably reduced fat oxidation rates during a ramp exercise test. Exercising in the heat should not be recommended for those individuals seeking to increase fat oxidation during exercise.


Assuntos
Tecido Adiposo/metabolismo , Ciclismo/fisiologia , Temperatura Alta , Temperatura , Adulto , Calorimetria Indireta , Estudos Cross-Over , Metabolismo Energético , Teste de Esforço , Frequência Cardíaca , Resposta ao Choque Térmico , Humanos , Oxirredução , Percepção/fisiologia , Esforço Físico/fisiologia , Troca Gasosa Pulmonar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa