Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 181(7): 1450-1451, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32589954

RESUMO

Some negative-sense RNA viruses prime mRNA transcription using host 5' cap sequences, usurping host translational machinery and evading antiviral surveillance. In this issue of Cell, Ho et al. identify an additional consequence of this viral strategy: the acquisition of upstream start codons from host-derived sequences and subsequent translation of novel viral products.


Assuntos
Capuzes de RNA , Proteínas Virais , Humanos , RNA Mensageiro , RNA Viral/genética , Proteínas Recombinantes de Fusão , Proteínas Virais/genética
2.
PLoS Pathog ; 20(1): e1011898, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236826

RESUMO

The outcome of viral infection depends on the diversity of the infecting viral population and the heterogeneity of the cell population that is infected. Until almost a decade ago, the study of these dynamic processes during viral infection was challenging and limited to certain targeted measurements. Presently, with the use of single-cell sequencing technology, the complex interface defined by the interactions of cells with infecting virus can now be studied across the breadth of the transcriptome in thousands of individual cells simultaneously. In this review, we will describe the use of single-cell RNA sequencing (scRNA-seq) to study the heterogeneity of viral infections, ranging from individual virions to the immune response between infected individuals. In addition, we highlight certain key experimental limitations and methodological decisions that are critical to analyzing scRNA-seq data at each scale.


Assuntos
Análise da Expressão Gênica de Célula Única , Viroses , Humanos , Análise de Sequência de RNA , Interações entre Hospedeiro e Microrganismos , Transcriptoma , Análise de Célula Única , Perfilação da Expressão Gênica
3.
Nucleic Acids Res ; 52(6): 3199-3212, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407436

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.


Assuntos
Genoma Viral , Vírus da Influenza A , Proteoma , Proteínas Virais , Humanos , Genoma Viral/genética , Vírus da Influenza A/genética , Proteoma/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética , Deleção de Sequência/genética , Animais , Cães , Linhagem Celular
4.
PLoS Pathog ; 19(4): e1010943, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068114

RESUMO

Influenza A virus exhibits high rates of replicative failure due to a variety of genetic defects. Most influenza virions cannot, when acting as individual particles, complete the entire viral life cycle. Nevertheless influenza is incredibly successful in the suppression of innate immune detection and the production of interferons, remaining undetected in >99% of cells in tissue-culture models of infection. Notably, the same variation that leads to replication failure can, by chance, inactivate the major innate immune antagonist in influenza A virus, NS1. What explains the observed rarity of interferon production in spite of the frequent loss of this, critical, antagonist? By studying how genetic and phenotypic variation in a viral population lacking NS1 correlates with interferon production, we have built a model of the "worst-case" failure from an improved understanding of the steps at which NS1 acts in the viral life cycle to prevent the triggering of an innate immune response. In doing so, we find that NS1 prevents the detection of de novo innate immune ligands, defective viral genomes, and viral export from the nucleus, although only generation of de novo ligands appears absolutely required for enhanced detection of virus in the absence of NS1. Due to this, the highest frequency of interferon production we observe (97% of infected cells) requires a high level of replication in the presence of defective viral genomes with NS1 bearing an inactivating mutation that does not impact its partner encoded on the same segment, NEP. This is incredibly unlikely to occur given the standard variation found within a viral population, and would generally require direct, artificial, intervention to achieve at an appreciable rate. Thus from our study, we procure at least a partial explanation for the seeming contradiction between high rates of replicative failure and the rarity of the interferon response to influenza infection.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Interferons/genética , Influenza Humana/genética , Proteínas não Estruturais Virais/genética , Vírus da Influenza A/genética , Imunidade Inata , Replicação Viral/genética
5.
Bioessays ; 45(11): e2300097, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37667453

RESUMO

Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.


Assuntos
Proteínas de Caenorhabditis elegans , Interferon Tipo I , Nematoides , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Interferon Tipo I/metabolismo , Mamíferos/metabolismo
6.
J Virol ; 96(14): e0050522, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35867557

RESUMO

Influenza virus infections are thought to be initiated in a small number of cells; however, the heterogeneity across the cellular responses of the epithelial cells during establishment of disease is incompletely understood. Here, we used an H1N1 influenza virus encoding a fluorescent reporter gene, a cell lineage-labeling transgenic mouse line, and single-cell RNA sequencing to explore the range of responses in a susceptible epithelial cell population during an acute influenza A virus (IAV) infection. Focusing on multiciliated cells, we identified a subpopulation that basally expresses interferon-stimulated genes (ISGs), which we hypothesize may be important for the early response to infection. We subsequently found that a population of infected ciliated cells produce most of the ciliated cell-derived inflammatory cytokines, and nearly all bystander ciliated cells induce a broadly antiviral state. From these data together, we propose that variable preexisting gene expression patterns in the initial cells targeted by the virus may ultimately affect the establishment of viral disease. IMPORTANCE Influenza A virus poses a significant threat to public health, and each year, millions of people in the United States alone are exposed to the virus. We do not currently, however, fully understand why some individuals clear the infection asymptomatically and others become severely ill. Understanding how these divergent phenotypes arise could eventually be leveraged to design therapeutics that prevent severe disease. As a first step toward understanding these different infection states, we used a technology that allowed us to determine how thousands of individual murine lung epithelial cells behaved before and during IAV infection. We found that small subsets of epithelial cells exhibited an antiviral state prior to infection, and similarly, some cells made high levels of inflammatory cytokines during infection. We propose that different ratios of these individual cellular responses may contribute to the broader antiviral state of the lung and may ultimately affect disease severity.


Assuntos
Células Epiteliais , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Animais , Cílios , Citocinas/metabolismo , Células Epiteliais/virologia , Humanos , Influenza Humana , Pulmão/citologia , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/patologia
7.
PLoS Pathog ; 17(12): e1010125, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882752

RESUMO

Found in a diverse set of viral populations, defective interfering particles are parasitic variants that are unable to replicate on their own yet rise to relatively high frequencies. Their presence is associated with a loss of population fitness, both through the depletion of key cellular resources and the stimulation of innate immunity. For influenza A virus, these particles contain large internal deletions in the genomic segments which encode components of the heterotrimeric polymerase. Using a library-based approach, we comprehensively profile the growth and replication of defective influenza species, demonstrating that they possess an advantage during genome replication, and that exclusion during population expansion reshapes population composition in a manner consistent with their final, observed, distribution in natural populations. We find that an innate immune response is not linked to the size of a deletion; however, replication of defective segments can enhance their immunostimulatory properties. Overall, our results address several key questions in defective influenza A virus biology, and the methods we have developed to answer those questions may be broadly applied to other defective viruses.


Assuntos
Vírus Defeituosos/genética , Aptidão Genética/genética , Vírus da Influenza A/genética , Animais , Linhagem Celular , Genoma Viral , Humanos
8.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068418

RESUMO

Influenza virus-infected cells vary widely in their expression of viral genes and only occasionally activate innate immunity. Here, we develop a new method to assess how the genetic variation in viral populations contributes to this heterogeneity. We do this by determining the transcriptome and full-length sequences of all viral genes in single cells infected with a nominally "pure" stock of influenza virus. Most cells are infected by virions with defects, some of which increase the frequency of innate-immune activation. These immunostimulatory defects are diverse and include mutations that perturb the function of the viral polymerase protein PB1, large internal deletions in viral genes, and failure to express the virus's interferon antagonist NS1. However, immune activation remains stochastic in cells infected by virions with these defects and occasionally is triggered even by virions that express unmutated copies of all genes. Our work shows that the diverse spectrum of defects in influenza virus populations contributes to-but does not completely explain-the heterogeneity in viral gene expression and immune activation in single infected cells.IMPORTANCE Because influenza virus has a high mutation rate, many cells are infected by mutated virions. But so far, it has been impossible to fully characterize the sequence of the virion infecting any given cell, since conventional techniques such as flow cytometry and single-cell transcriptome sequencing (scRNA-seq) only detect if a protein or transcript is present, not its sequence. Here we develop a new approach that uses long-read PacBio sequencing to determine the sequences of virions infecting single cells. We show that viral genetic variation explains some but not all of the cell-to-cell variability in viral gene expression and innate immune induction. Overall, our study provides the first complete picture of how viral mutations affect the course of infection in single cells.


Assuntos
Variação Genética , Imunidade Inata , Vírus da Influenza A Subtipo H1N1 , Análise de Sequência de RNA , Análise de Célula Única , Proteínas não Estruturais Virais , Células A549 , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
9.
Nature ; 496(7446): 508-12, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23552891

RESUMO

Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 and A2 activity, which are common in host-cell-targeting bacterial toxins and the venoms of certain insects and reptiles. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors. Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D, is a member of the type VI lipase effector superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). Although previous studies have specifically implicated PldA and the H2-T6SS in pathogenesis, we uncovered a specific role for the effector and its secretory machinery in intra- and interspecies bacterial interactions. Furthermore, we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine, the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.


Assuntos
Antibacterianos/metabolismo , Antibiose , Sistemas de Secreção Bacterianos , Fosfolipase D/metabolismo , Pseudomonas aeruginosa/enzimologia , Membrana Celular/química , Membrana Celular/metabolismo , Evolução Molecular , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/química , Fosfolipase D/classificação , Filogenia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Especificidade da Espécie , Especificidade por Substrato , Fatores de Virulência/química , Fatores de Virulência/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(13): 3639-44, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26957597

RESUMO

The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.


Assuntos
Microbioma Gastrointestinal/fisiologia , Animais , Bacteroides fragilis/genética , Bacteroides fragilis/imunologia , Bacteroides fragilis/fisiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Genoma Bacteriano , Vida Livre de Germes , Humanos , Masculino , Camundongos , Modelos Animais , Filogenia , Simbiose/genética , Simbiose/imunologia , Simbiose/fisiologia , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/imunologia , Sistemas de Secreção Tipo VI/fisiologia
11.
Nature ; 475(7356): 343-7, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21776080

RESUMO

Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Bacteriólise , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Interações Microbianas , Pseudomonas aeruginosa/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Hidrólise , Muramidase/química , Muramidase/genética , Muramidase/metabolismo , Peptidoglicano/metabolismo , Periplasma/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/metabolismo , Especificidade por Substrato
12.
Mol Microbiol ; 92(3): 529-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589350

RESUMO

Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), haemolysin co-regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone-like quality of Hcp. Application of this approach to the Hcp secretion island I-encoded T6SS (H1-T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (type VI secretion exported 4), subsequently shown to act as a potent intra-specific H1-T6SS-delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1-T6SS effectors, Tse5 and Tse6, which differ from Hcp-stabilized substrates by the presence of toxin-associated PAAR-repeat motifs and genetic linkage to members of the valine-glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp-stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1-T6SS-exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transporte Proteico
13.
Proc Natl Acad Sci U S A ; 109(48): 19804-9, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150540

RESUMO

Interbacterial interaction pathways play an important role in defining the structure and complexity of bacterial associations. A quantitative description of such pathways offers promise for understanding the forces that contribute to community composition. We developed time-lapse fluorescence microscopy methods for quantitation of interbacterial interactions and applied these to the characterization of type VI secretion (T6S) in Pseudomonas aeruginosa. Our analyses allowed a direct determination of the efficiency of recipient cell lysis catalyzed by this intercellular toxin delivery pathway and provided evidence that its arsenal extends beyond known effector proteins. Measurement of T6S apparatus localization revealed correlated activation among neighboring cells, which, taken together with genetic data, implicate the elaboration of a functional T6S apparatus with a marked increase in susceptibility to intoxication. This possibility was supported by the identification of T6S-inactivating mutations in a genome-wide screen for resistance to T6S-mediated intoxication and by time-lapse fluorescence microscopy analyses showing a decreased lysis rate of recipient cells lacking T6S function. Our discoveries highlight the utility of single-cell approaches for measuring interbacterial phenomena and provide a foundation for studying the contribution of a widespread bacterial interaction pathway to community structure.


Assuntos
Pseudomonas aeruginosa/fisiologia , Microscopia de Fluorescência
14.
J Biol Chem ; 288(37): 26616-24, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23878199

RESUMO

Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , N-Acetil-Muramil-L-Alanina Amidase/química , Calorimetria , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Escherichia coli/metabolismo , Microscopia de Contraste de Fase , Muramidase/química , Peptidoglicano/química , Conformação Proteica , Dobramento de Proteína , Pseudomonas/metabolismo , Pseudomonas putida/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(7): 2975-80, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282655

RESUMO

The virulence of Pseudomonas syringae and many other proteobacterial pathogens is dependent on complex repertoires of effector proteins injected into host cells by type III secretion systems. The 28 well-expressed effector genes in the repertoire of the model pathogen P. syringae pv. tomato DC3000 were deleted to produce polymutant DC3000D28E. Growth of DC3000D28E in Nicotiana benthamiana was symptomless and 4 logs lower than that of DC3000ΔhopQ1-1, which causes disease in this model plant. DC3000D28E seemed functionally effectorless but otherwise WT in diagnostic phenotypes relevant to plant interactions (for example, ability to inject the AvrPto-Cya reporter into N. benthamiana). Various effector genes were integrated by homologous recombination into native loci or by a programmable or random in vivo assembly shuttle (PRIVAS) system into the exchangeable effector locus in the Hrp pathogenicity island of DC3000D28E. The latter method exploited dual adapters and recombination in yeast for efficient assembly of PCR products into programmed or random combinations of multiple effector genes. Native and PRIVAS-mediated integrations were combined to identify a minimal functional repertoire of eight effector genes that restored much of the virulence of DC3000ΔhopQ1-1 in N. benthamiana, revealing a hierarchy in effector function: AvrPtoB acts with priority in suppressing immunity, enabling other effectors to promote further growth (HopM1 and HopE1), chlorosis (HopG1), lesion formation (HopAM1-1), and near full growth and symptom production (AvrE, HopAA1-1, and/or HopN1 functioning synergistically with the previous effectors). DC3000D28E, the PRIVAS method, and minimal functional repertoires provide new resources for probing the plant immune system.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Proteínas de Bactérias/genética , Primers do DNA/genética , Vetores Genéticos/genética , Ilhas Genômicas/genética , Reação em Cadeia da Polimerase , Especificidade da Espécie , Nicotiana/metabolismo , Virulência
16.
bioRxiv ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39314307

RESUMO

Influenza A virus encodes promoters in both the sense and antisense orientations. These support the generation of new genomes, antigenomes, and mRNA transcripts. Using minimal replication assays-transfections with viral polymerase, nucleoprotein, and a genomic template-the influenza promoter sequences were identified as 13nt at the 5' end of the viral genomic RNA (U13) and 12nt at the 3' end (U12). Other than the fourth 3' nucleotide, the U12 and U13 sequences are identical between all eight RNA molecules that comprise the segmented influenza genome. Despite possessing identical promoters, individual segments can exhibit different transcriptional dynamics during infection. However flu promoter sequences were defined in experiments without influenza NS2, a protein which modulates transcription and replication differentially between genomic segments. This suggests that the identity of the "complete" promoter may depend on NS2. Here we assess how internal sequences of two genomic segments, HA and PB1, may contribute to NS2-dependent replication as well as map such interactions down to individual nucleotides in PB1. We find that the expression of NS2 significantly alters sequence requirements for efficient replication beyond the identical U12 and U13 sequence, providing a mechanism for the divergent replication and transcription dynamics across the influenza A virus genome.

17.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38168266

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.

18.
J Bacteriol ; 195(2): 287-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144243

RESUMO

Pseudomonas syringae pv. tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors; however, it promotes chlorosis in the model plant Nicotiana benthamiana in a manner independent of type III secretion. Coronatine is produced by the ligation of two moieties, coronafacic acid (CFA) and coronamic acid (CMA), which are produced by biosynthetic pathways encoded in separate operons. Cross-feeding experiments, performed in N. benthamiana with cfa, cma, and cmaL mutants, implicate CmaL in CMA production. Furthermore, analysis of bacterial supernatants under coronatine-inducing conditions revealed that mutants lacking either the cma operon or cmaL accumulate CFA rather than coronatine, supporting a role for CmaL in the regulation or biosynthesis of CMA. CmaL does not appear to regulate CMA production, since the expression of proteins with known roles in CMA production is unaltered in cmaL mutants. Rather, CmaL is needed for the first step in CMA synthesis, as evidenced by the fact that wild-type levels of coronatine production are restored to a ΔcmaL mutant when it is supplemented with 50 µg/ml l-allo-isoleucine, the starting unit for CMA production. cmaL is found in all other sequenced P. syringae strains with coronatine biosynthesis genes. This characterization of CmaL identifies a critical missing factor in coronatine production and provides a foundation for further investigation of a member of the widespread DUF1330 protein family.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Indenos/metabolismo , Isoleucina/metabolismo , Pseudomonas syringae/enzimologia , Deleção de Genes , Redes e Vias Metabólicas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Nicotiana/microbiologia
19.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36722473

RESUMO

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Assuntos
COVID-19 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Humanos , COVID-19/patologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos , Influenza Humana/patologia , Influenza Humana/virologia , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios , SARS-CoV-2
20.
Elife ; 112022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762582

RESUMO

Members of the bacterial T6SS amidase effector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from Pseudomonas aeruginosa PAO1 using a combination of nuclear magnetic resonance and a high-throughput in vivo genetic approach called deep mutational scanning (DMS). As expected, combined analyses confirmed the role of critical residues near the Tae1 catalytic center. Unexpectedly, DMS revealed substantial contributions to enzymatic activity from a much larger, ring-like functional hot spot extending around the entire circumference of the enzyme. Comparative DMS across distinct growth conditions highlighted how functional contribution of different surfaces is highly context-dependent, varying alongside composition of targeted cell walls. These observations suggest that Tae1 engages with the intact cell wall network through a more distributed three-dimensional interaction interface than previously appreciated, providing an explanation for observed differences in antimicrobial potency across divergent Gram-negative competitors. Further binding studies of several Tae1 variants with their cognate immunity protein demonstrate that requirements to maintain protection from Tae activity may be a significant constraint on the mutational landscape of tae1 toxicity in the wild. In total, our work reveals that Tae diversification has likely been shaped by multiple independent pressures to maintain interactions with binding partners that vary across bacterial species and conditions.


Assuntos
Amidoidrolases , Peptidoglicano , Amidoidrolases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa