Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 28(9): 1998-2015, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27600536

RESUMO

While transformation of the major monocot crops is currently possible, the process typically remains confined to one or two genotypes per species, often with poor agronomics, and efficiencies that place these methods beyond the reach of most academic laboratories. Here, we report a transformation approach involving overexpression of the maize (Zea mays) Baby boom (Bbm) and maize Wuschel2 (Wus2) genes, which produced high transformation frequencies in numerous previously nontransformable maize inbred lines. For example, the Pioneer inbred PHH5G is recalcitrant to biolistic and Agrobacterium tumefaciens transformation. However, when Bbm and Wus2 were expressed, transgenic calli were recovered from over 40% of the starting explants, with most producing healthy, fertile plants. Another limitation for many monocots is the intensive labor and greenhouse space required to supply immature embryos for transformation. This problem could be alleviated using alternative target tissues that could be supplied consistently with automated preparation. As a major step toward this objective, we transformed Bbm and Wus2 directly into either embryo slices from mature seed or leaf segments from seedlings in a variety of Pioneer inbred lines, routinely recovering healthy, fertile T0 plants. Finally, we demonstrated that the maize Bbm and Wus2 genes stimulate transformation in sorghum (Sorghum bicolor) immature embryos, sugarcane (Saccharum officinarum) callus, and indica rice (Oryza sativa ssp indica) callus.

2.
Nat Plants ; 9(2): 255-270, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759580

RESUMO

Transformation in grass species has traditionally relied on immature embryos and has therefore been limited to a few major Poaceae crops. Other transformation explants, including leaf tissue, have been explored but with low success rates, which is one of the major factors hindering the broad application of genome editing for crop improvement. Recently, leaf transformation using morphogenic genes Wuschel2 (Wus2) and Babyboom (Bbm) has been successfully used for Cas9-mediated mutagenesis, but complex genome editing applications, requiring large numbers of regenerated plants to be screened, remain elusive. Here we demonstrate that enhanced Wus2/Bbm expression substantially improves leaf transformation in maize and sorghum, allowing the recovery of plants with Cas9-mediated gene dropouts and targeted gene insertion. Moreover, using a maize-optimized Wus2/Bbm construct, embryogenic callus and regenerated plantlets were successfully produced in eight species spanning four grass subfamilies, suggesting that this may lead to a universal family-wide method for transformation and genome editing across the Poaceae.


Assuntos
Sorghum , Zea mays , Zea mays/genética , Sorghum/genética , Plantas Geneticamente Modificadas/genética , Grão Comestível/genética , Edição de Genes , Sistemas CRISPR-Cas
3.
Front Plant Sci ; 11: 1298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983193

RESUMO

Use of the morphogenic genes Baby Boom (Bbm) and Wuschel2 (Wus2), along with new ternary constructs, has increased the genotype range and the type of explants that can be used for maize transformation. Further optimizing the expression pattern for Bbm/Wus2 has resulted in rapid maize transformation methods that are faster and applicable to a broader range of inbreds. However, expression of Bbm/Wus2 can compromise the quality of regenerated plants, leading to sterility. We reasoned excising morphogenic genes after transformation but before regeneration would increase production of fertile T0 plants. We developed a method that uses an inducible site-specific recombinase (Cre) to excise morphogenic genes. The use of developmentally regulated promoters, such as Ole, Glb1, End2, and Ltp2, to drive Cre enabled excision of morphogenic genes in early embryo development and produced excised events at a rate of 25-100%. A different strategy utilizing an excision-activated selectable marker produced excised events at a rate of 53-68%; however, the transformation frequency was lower (13-50%). The use of inducible heat shock promoters (e.g. Hsp17.7, Hsp26) to express Cre, along with improvements in tissue culture conditions and construct design, resulted in high frequencies of T0 transformation (29-69%), excision (50-97%), usable quality events (4-15%), and few escapes (non-transgenic; 14-17%) in three elite maize inbreds. Transgenic events produced by this method are free of morphogenic and marker genes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa