Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Conserv Biol ; 35(5): 1519-1529, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33993540

RESUMO

Understanding how anthropogenic disturbances affect plant-pollinator systems has important implications for the conservation of biodiversity and ecosystem functioning. Previous laboratory studies show that pesticides and pathogens, which have been implicated in the rapid global decline of pollinators over recent years, can impair behavioral processes needed for pollinators to adaptively exploit floral resources and effectively transfer pollen among plants. However, the potential for these sublethal stressor effects on pollinator-plant interactions at the individual level to scale up into changes to the dynamics of wild plant and pollinator populations at the system level remains unclear. We developed an empirically parameterized agent-based model of a bumblebee pollination system called SimBee to test for effects of stressor-induced decreases in the memory capacity and information processing speed of individual foragers on bee abundance (scenario 1), plant diversity (scenario 2), and bee-plant system stability (scenario 3) over 20 virtual seasons. Modeling of a simple pollination network of a bumblebee and four co-flowering bee-pollinated plant species indicated that bee decline and plant species extinction events could occur when only 25% of the forager population showed cognitive impairment. Higher percentages of impairment caused 50% bee loss in just five virtual seasons and system-wide extinction events in less than 20 virtual seasons under some conditions. Plant species extinctions occurred regardless of bee population size, indicating that stressor-induced changes to pollinator behavior alone could drive species loss from plant communities. These findings indicate that sublethal stressor effects on pollinator behavioral mechanisms, although seemingly insignificant at the level of individuals, have the cumulative potential in principle to degrade plant-pollinator species interactions at the system level. Our work highlights the importance of an agent-based modeling approach for the identification and mitigation of anthropogenic impacts on plant-pollinator systems.


Aumento en el Modelado de los Impactos Antropogénicos de Polinizador Individual a Sistemas de Polinización Resumen El entendimiento de cómo las perturbaciones antropogénicas afectan a los sistemas planta-polinizador tiene consecuencias importantes para la conservación de la biodiversidad y el funcionamiento del ecosistema. Los estudios previos realizados en laboratorios muestran que los pesticidas y los patógenos, los cuales han estado implicados en la rápida declinación global de los polinizadores en los años recientes, pueden perjudicar los procesos de comportamiento necesarios para que los polinizadores exploten adaptativamente los recursos florales y transfieran de manera efectiva el polen entre las plantas. Sin embargo, todavía no está claro el potencial de que estos efectos estresantes subletales sobre las interacciones planta-polinizador a nivel individual escalen a cambios en las dinámicas de las plantas y las poblaciones silvestres de polinizadores a nivel de sistema. Desarrollamos un modelo basado en el agente y con parámetros empíricos para un sistema de polinización de abejorros llamado SimBee. Con él analizamos los efectos de las disminuciones inducidas por estresantes sobre la capacidad de memoria y la velocidad de procesamiento de información de los forrajeros individuales en la abundancia de abejas (escenario 1), diversidad de plantas (escenario 2) y la estabilidad en el sistema abeja-planta (escenario 3) durante 20 temporadas virtuales. El modelado de una red simple de polinización de un abejorro y cuatro especies de plantas con floración a la par y polinizadas por abejas indicó que la declinación de abejas y los eventos de extinción de plantas podrían ocurrir cuando sólo el 25% de la población forrajera muestra daños cognitivos. Los porcentajes más altos de daños cognitivos mostraron 50% de pérdida de abejas en sólo cinco temporadas virtuales y eventos de extinción en todo el sistema en <20 temporadas virtuales bajo algunas condiciones. La extinción de las especies de plantas ocurrió sin importar el tamaño poblacional de las abejas, lo que indica que los cambios inducidos por los estresantes tan sólo al comportamiento polinizador podrían resultar en la pérdida de especies dentro de las comunidades botánicas. Estos resultados indican que los efectos estresantes subletales en los mecanismos de comportamiento de los polinizadores, aunque parezcan insignificantes a nivel de individuo, tienen el potencial acumulativo, en principio, de degradar las interacciones entre especies de plantas y polinizadores a nivel de sistema. Nuestro trabajo resalta la importancia de una estrategia de modelado basado en el agente para la identificación y mitigación de los impactos antropogénicos sobre los sistemas planta-polinizador.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Conservação dos Recursos Naturais , Flores , Pólen
2.
Dev Biol ; 373(1): 1-13, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23022657

RESUMO

Directed cell migration and process outgrowth are vital to proper development of many metazoan tissues. These processes are dependent on reorganization of the actin cytoskeleton in response to external guidance cues. During development of the nervous system, the MIG-10/RIAM/Lamellipodin (MRL) signaling proteins are thought to transmit positional information from surface guidance cues to the actin polymerization machinery, and thus to promote polarized outgrowth of axons. In C. elegans, mutations in the MRL family member gene mig-10 result in animals that have defects in axon guidance, neuronal migration, and the outgrowth of the processes or 'canals' of the excretory cell, which is required for osmoregulation in the worm. In addition, mig-10 mutant animals have recently been shown to have defects in clustering of vesicles at the synapse. To determine additional molecular partners of MIG-10, we conducted a yeast two-hybrid screen using isoform MIG-10A as bait and isolated Abelson-interactor protein-1 (ABI-1). ABI-1, a downstream target of Abl non-receptor tyrosine kinase, is a member of the WAVE regulatory complex (WRC) involved in the initiation of actin polymerization. Further analysis using a co-immunoprecipitation system confirmed the interaction of MIG-10 and ABI-1 and showed that it requires the SH3 domain of ABI-1. Single mutants for mig-10 and abi-1 displayed similar phenotypes of incomplete migration of the ALM neurons and truncated outgrowth of the excretory cell canals, suggesting that the ABI-1/MIG-10 interaction is relevant in vivo. Cell autonomous expression of MIG-10 isoforms rescued both the neuronal migration and the canal outgrowth defects, showing that MIG-10 functions autonomously in the ALM neurons and the excretory cell. These results suggest that MIG-10 and ABI-1 interact physically to promote cell migration and process outgrowth in vivo. In the excretory canal, ABI-1 is thought to act downstream of UNC-53/NAV2, linking this large scaffolding protein to actin polymerization during excretory canal outgrowth. abi-1(RNAi) enhanced the excretory canal truncation observed in mig-10 mutants, while double mutant analysis between unc-53 and mig-10 showed no increased truncation of the posterior canal beyond that observed in mig-10 mutants. Morphological analysis of mig-10 and unc-53 mutants showed that these genes regulate canal diameter as well as its length, suggesting that defective lumen formation may be linked to the ability of the excretory canal to grow out longitudinally. Taken together, our results suggest that MIG-10, UNC-53, and ABI-1 act sequentially to mediate excretory cell process outgrowth.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Movimento Celular/fisiologia , Extensões da Superfície Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Sistema Nervoso/embriologia , Análise de Variância , Animais , Proteínas de Caenorhabditis elegans/genética , Imunoprecipitação , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido
3.
BMC Genomics ; 14: 656, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24066673

RESUMO

BACKGROUND: Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury - by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. RESULTS: We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules, matrix remodelling, cytoskeleton, and cytokines were determined to be affected by FGF2 treatment. CONCLUSIONS: Transcriptome analysis comparing control adult human fibroblasts with FGF2-treated fibroblasts identified functional groups of genes that reflect transcriptional changes potentially contributing to their regeneration competence. This comparative transcriptome analysis should contribute new insights into genes that characterize cells with greater regenerative potential.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Regeneração/genética , Transcriptoma/genética , Adulto , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Receptores de Citocinas/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/genética
4.
PLoS One ; 16(9): e0257404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506617

RESUMO

As powerful computational tools and 'big data' transform the biological sciences, bioinformatics training is becoming necessary to prepare the next generation of life scientists. Furthermore, because the tools and resources employed in bioinformatics are constantly evolving, bioinformatics learning materials must be continuously improved. In addition, these learning materials need to move beyond today's typical step-by-step guides to promote deeper conceptual understanding by students. One of the goals of the Network for Integrating Bioinformatics into Life Sciences Education (NIBSLE) is to create, curate, disseminate, and assess appropriate open-access bioinformatics learning resources. Here we describe the evolution, integration, and assessment of a learning resource that explores essential concepts of biological sequence similarity. Pre/post student assessment data from diverse life science courses show significant learning gains. These results indicate that the learning resource is a beneficial educational product for the integration of bioinformatics across curricula.


Assuntos
Biologia Computacional/métodos , Educação a Distância , Aprendizagem , Big Data , Disciplinas das Ciências Biológicas/educação , Simulação por Computador , Currículo , Escolaridade , Humanos , Modelos Lineares , Planejamento Social , Estudantes
5.
Biochem Mol Biol Educ ; 48(5): 492-498, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33463080

RESUMO

The COVID-19 pandemic has led to an urgent need for engaging computational alternatives to traditional laboratory exercises. Here we introduce a customizable and flexible workflow, designed with the SARS CoV-2 virus that causes COVID-19 in mind, as a means of reinforcing fundamental biology concepts using bioinformatics approaches. This workflow is accessible to a wide range of students in life science majors regardless of their prior bioinformatics knowledge, and all software is freely available, thus eliminating potential cost barriers. Using the workflow can thus provide a diverse group of students the opportunity to conduct inquiry-driven research. Here we demonstrate the utility of this workflow and outline the logical steps involved in the identification of therapeutic or vaccine targets against SARS CoV-2. We also provide an example of how the workflow may be adapted to other infectious microbes. Overall, our workflow anchors student understanding of viral biology and genomics and allows students to develop valuable bioinformatics expertise as well as to hone critical thinking and problem-solving skills, while also creating an opportunity to better understand emerging information surrounding the COVID-19 pandemic.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Biologia Computacional/educação , Biologia Computacional/métodos , Educação a Distância/métodos , Fluxo de Trabalho , Antivirais/uso terapêutico , Disciplinas das Ciências Biológicas , COVID-19/imunologia , Humanos , Aprendizagem , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Estudantes
6.
Biochem Mol Biol Educ ; 48(4): 381-390, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32585745

RESUMO

While it is essential for life science students to be trained in modern techniques and approaches, rapidly developing, interdisciplinary fields such as bioinformatics present distinct challenges to undergraduate educators. In particular, many educators lack training in new fields, and high-quality teaching and learning materials may be sparse. To address this challenge with respect to bioinformatics, the Network for the Integration of Bioinformatics into Life Science Education (NIBLSE), in partnership with Quantitative Undergraduate Biology Education and Synthesis (QUBES), developed incubators, a novel collaborative process for the development of open educational resources (OER). Incubators are short-term, online communities that refine unpublished teaching lessons into more polished and widely usable learning resources. The resulting products are published and made freely available in the NIBLSE Resource Collection, providing recognition of scholarly work by incubator participants. In addition to producing accessible, high-quality resources, incubators also provide opportunities for faculty development. Because participants are intentionally chosen to represent a range of expertise in bioinformatics and pedagogy, incubators also build professional connections among educators with diverse backgrounds and perspectives and promote the discussion of practical issues involved in deploying a resource in the classroom. Here we describe the incubator process and provide examples of beneficial outcomes. Our experience indicates that incubators are a low cost, short-term, flexible method for the development of OERs and professional community that could be adapted to a variety of disciplinary and pedagogical contexts.


Assuntos
Disciplinas das Ciências Biológicas/educação , Redes Comunitárias , Biologia Computacional/educação , Currículo/normas , Aprendizagem , Ensino/normas , Humanos , Estudantes
7.
Curr Biol ; 16(9): 845-53, 2006 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-16563765

RESUMO

BACKGROUND: Axon migrations are guided by extracellular cues that can act as repellants or attractants. However, the logic underlying the manner through which attractive and repulsive responses are determined is unclear. Many extracellular guidance cues, and the cellular components that mediate their signals, have been implicated in both types of responses. RESULTS: Genetic analyses indicate that MIG-10/RIAM/lamellipodin, a cytoplasmic adaptor protein, functions downstream of the attractive guidance cue UNC-6/netrin and the repulsive guidance cue SLT-1/slit to direct the ventral migration of the AVM and PVM axons in C. elegans. Furthermore, overexpression of MIG-10 in the absence of UNC-6 and SLT-1 induces a multipolar phenotype with undirected outgrowths. Addition of either UNC-6 or SLT-1 causes the neurons to become monopolar. Moreover, the ability of UNC-6 or SLT-1 to direct the axon ventrally is enhanced by the MIG-10 overexpression. We also demonstrate that an interaction between MIG-10 and UNC-34, a protein that promotes actin-filament extension, is important in the response to guidance cues and that MIG-10 colocalizes with actin in cultured cells, where it can induce the formation of lamellipodia. CONCLUSIONS: We conclude that MIG-10 mediates the guidance of AVM and PVM axons in response to the extracellular UNC-6 and SLT-1 guidance cues. The attractive and repulsive guidance cues orient MIG-10-dependant axon outgrowth to cause a directional response.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Animais , Processos de Crescimento Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Sistema Nervoso/crescimento & desenvolvimento , Netrinas
8.
PLoS One ; 14(11): e0224288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31738797

RESUMO

Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents-lack of student interest, overly-full curricula, and lack of student preparation-were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.


Assuntos
Biologia/educação , Biologia Computacional/educação , Currículo , Docentes/estatística & dados numéricos , Feminino , Humanos , Masculino , Motivação , Estudantes/psicologia , Inquéritos e Questionários/estatística & dados numéricos , Estados Unidos
9.
PLoS One ; 13(6): e0196878, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870542

RESUMO

Although bioinformatics is becoming increasingly central to research in the life sciences, bioinformatics skills and knowledge are not well integrated into undergraduate biology education. This curricular gap prevents biology students from harnessing the full potential of their education, limiting their career opportunities and slowing research innovation. To advance the integration of bioinformatics into life sciences education, a framework of core bioinformatics competencies is needed. To that end, we here report the results of a survey of biology faculty in the United States about teaching bioinformatics to undergraduate life scientists. Responses were received from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate hundreds of thousands of students every year. Results indicate strong, widespread agreement that bioinformatics knowledge and skills are critical for undergraduate life scientists as well as considerable agreement about which skills are necessary. Perceptions of the importance of some skills varied with the respondent's degree of training, time since degree earned, and/or the Carnegie Classification of the respondent's institution. To assess which skills are currently being taught, we analyzed syllabi of courses with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the analysis of the syllabi, and our collective research and teaching expertise to develop a set of bioinformatics core competencies for undergraduate biology students. These core competencies are intended to serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula.


Assuntos
Biologia Computacional/educação , Competência Mental , Aprendizagem Baseada em Problemas , Adolescente , Adulto , Feminino , Humanos , Masculino , Estados Unidos
10.
Dev Biol ; 299(1): 193-205, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16928366

RESUMO

The adhesion of growing neurites into appropriate bundles or fascicles is important for the development of correct synaptic connectivity in the nervous system. We describe fasciculation defects of animals with mutations in the C. elegans gene dig-1 and show that dig-1 encodes a giant molecule (13,100 amino acids) of the immunoglobulin superfamily. Five new alleles of dig-1 were isolated in a screen for mutations affecting the morphology or function of several classes of head sensory neurons. Mutants showed process defasciculation of several classes of neurons. Analysis of a temperature-sensitive allele revealed that dig-1 is required during embryogenesis for normal process fasciculation of one class of head sensory neuron. Partial sequencing of two alleles, RNA interference (RNAi) and rescuing experiments showed that dig-1 encodes a giant molecule of the immunoglobulin superfamily. DIG-1 protein contains many domains associated with adhesion, is likely secreted, and has some features of proteoglycans. dig-1 mutants were originally isolated due to their displaced gonads [Thomas, J.H., Stern, M.J., Horvitz, H.R., 1990. Cell interactions coordinate the development of the C. elegans egg-laying system. Cell 62, 1041-52]; thus, dig-1 alleles were also characterized for their effects on gonad placement. Mutant phenotypes suggest that DIG-1 may mediate cell movement as well as process fasciculation and that different regions of the protein may mediate these functions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fasciculação/patologia , Genes de Helmintos/genética , Imunoglobulinas/metabolismo , Neurônios/patologia , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/química , Moléculas de Adesão Celular/metabolismo , Cosmídeos , Embrião não Mamífero/citologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/patologia , Imunoglobulinas/química , Larva/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Neurônios/citologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa