Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tree Physiol ; 42(12): 2404-2418, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849053

RESUMO

Incomplete knowledge of carbon (C) allocation dynamics in trees hinders accurate modeling and future predictions of tree growth. We studied C allocation dynamics in a mature Pinus sylvestris L. dominated forest with a novel analytical approach, allowing the first comparison of: (i) magnitude and δ13C of shoot, stem and soil CO2 fluxes (Ashoot, Rstem and Rsoil), (ii) concentration and δ13C of compound-specific and/or bulk non-structural carbohydrates (NSCs) in phloem and roots and (iii) growth of stem and fine roots. Results showed a significant effect of phloem NSC concentrations on tracheid growth, and both variables significantly impacted Rstem. Also, concentrations of root NSCs, especially starch, had a significant effect on fine root growth, although no effect of root NSC concentrations or root growth was detected on Rsoil. Time series analysis between δ13C of Ashoot and δ13C of Rstem or δ13C of Rsoil revealed strengthened C allocation to stem or roots under high C demands. Furthermore, we detected a significant correlation between δ13C of Rstem and δ13C of phloem sucrose and glucose, but not for starch or water-soluble carbohydrates. Our results indicate the need to include C allocation dynamics into tree growth models. We recommend using compound-specific concentration and δ13C analysis to reveal C allocation processes that may not be detected by the conventional approach that utilizes bulk organic matter.


Assuntos
Carbono , Árvores , Solo , Florestas , Carboidratos/análise , Amido
2.
Tree Physiol ; 40(2): 272-283, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860713

RESUMO

Scots pine (Pinus sylvestris L.) is one of the most important conifers in Northern Europe. In boreal forests, over one-third of net primary production is allocated to roots. Pioneer roots expand the horizontal and vertical root systems and transport nutrients and water from belowground to aboveground. Fibrous roots, often colonized by mycorrhiza, emerge from the pioneer roots and absorb water and nutrients from the soil. In this study, we installed three flatbed scanners to detect the daily growth of both pioneer and fibrous roots of Scots pine during the growing season of 2018, a year with an unexpected summer drought in Southern Finland. The growth rate of both types of roots had a positive relationship with temperature. However, the relations between root elongation rate and soil moisture differed significantly between scanners and between root types indicating spatial heterogeneity in soil moisture. The pioneer roots were more tolerant to severe environmental conditions than the fibrous roots. The pioneer roots initiated elongation earlier and ceased it later than the fibrous roots. Elongation ended when the temperature dropped below the threshold temperature of 4 °C for pioneer roots and 6 °C for fibrous roots. During the summer drought, the fibrous roots halted root surface area growth at the beginning of the drought, but there was no drought effect on the pioneer roots over the same period. To compare the timing of root production and the aboveground organs' production, we used the CASSIA model, which estimates the aboveground tree carbon dynamics. In this study, root growth started and ceased later than growth of aboveground organs. Pioneer roots accounted for 87% of total root productivity. We suggest that future carbon allocation models should separate the roots by root types (pioneer and fibrous), as their growth patterns are different and they have different reactions to changes in the soil environment.


Assuntos
Pinus sylvestris , Pinus , Europa (Continente) , Finlândia , Raízes de Plantas , Temperatura , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa