Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Mol Cell Cardiol ; 188: 30-37, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266978

RESUMO

The cardiac thin filament proteins troponin and tropomyosin control actomyosin formation and thus cardiac contractility. Calcium binding to troponin changes tropomyosin position along the thin filament, allowing myosin head binding to actin required for heart muscle contraction. The thin filament regulatory proteins are hot spots for genetic mutations causing heart muscle dysfunction. While much of the thin filament structure has been characterized, critical regions of troponin and tropomyosin involved in triggering conformational changes remain unresolved. A poorly resolved region, helix-4 (H4) of troponin I, is thought to stabilize tropomyosin in a position on actin that blocks actomyosin interactions at low calcium concentrations during muscle relaxation. We have proposed that contact between glutamate 139 on tropomyosin and positively charged residues on H4 leads to blocking-state stabilization. In this study, we attempted to disrupt these interactions by replacing E139 with lysine (E139K) to define the importance of this residue in thin filament regulation. Comparison of mutant and wild-type tropomyosin was carried out using in-vitro motility assays, actin co-sedimentation, and molecular dynamics simulations to determine perturbations in troponin-tropomyosin function caused by the tropomyosin mutation. Motility assays revealed that mutant thin filaments moved at higher velocity at low calcium with increased calcium sensitivity demonstrating that tropomyosin residue 139 is vital for proper tropomyosin-mediated inhibition during relaxation. Similarly, molecular dynamic simulations revealed a mutation-induced decrease in interaction energy between tropomyosin-E139K and troponin I (R170 and K174). These results suggest that salt-bridge stabilization of tropomyosin position by troponin IH4 is essential to prevent actomyosin interactions during cardiac muscle relaxation.


Assuntos
Ácido Glutâmico , Tropomiosina , Actinas , Actomiosina , Troponina I , Cálcio
2.
Cell Mol Life Sci ; 80(12): 376, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010414

RESUMO

Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-ß (Aß) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aß1-40 and Aß1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aß aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aß aggregation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apolipoproteínas E , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo
3.
Arch Biochem Biophys ; 725: 109282, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35577070

RESUMO

Tropomyosin, controlled by troponin-linked Ca2+-binding, regulates muscle contraction by a macromolecular scale steric-mechanism that governs myosin-crossbridge-actin interactions. At low-Ca2+, C-terminal domains of troponin-I (TnI) trap tropomyosin in a position on thin filaments that interferes with myosin-binding, thus causing muscle relaxation. Steric inhibition is reversed at high-Ca2+ when TnI releases from F-actin-tropomyosin as Ca2+ and the TnI switch-peptide bind to the N-lobe of troponin-C (TnC). The opposite end of cardiac TnI contains a phosphorylation-sensitive ∼30 residue-long N-terminal peptide that is absent in skeletal muscle, and likely modifies these interactions in hearts. Here, PKA-dependent phosphorylation of serine 23 and 24 modulates Ca2+ and possibly switch-peptide binding to TnC, causing faster relaxation during the cardiac-cycle (lusitropy). The cardiac-specific N-terminal TnI domain is not captured in crystal structures of troponin or in cryo-EM reconstructions of thin filaments; thus, its global impact on thin filament structure and function is uncertain. Here, we used protein-protein docking and molecular dynamics simulation-based protocols to build a troponin model that was guided by and hence consistent with the recent seminal Yamada structure of Ca2+-activated thin filaments. We find that when present on thin filaments, phosphorylated Ser23/24 along with adjacent polar TnI residues interact closely with both tropomyosin and the N-lobe of TnC during our simulations. These interactions would likely bias tropomyosin to an off-state positioning on actin. In situ, such enhanced relaxation kinetics would promote cardiac lusitropy.


Assuntos
Tropomiosina , Troponina I , Actinas/metabolismo , Cálcio/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Tropomiosina/química , Troponina C/metabolismo , Troponina I/química
4.
J Biol Chem ; 295(50): 17128-17137, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020181

RESUMO

Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin-tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin's reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T's N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin-tropomyosin binding and weaker tropomyosin-actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin-thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Cardiomiopatia Dilatada/genética , Mutação de Sentido Incorreto , Tropomiosina/química , Tropomiosina/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Substituição de Aminoácidos , Cardiomiopatia Dilatada/metabolismo , Dicroísmo Circular , Humanos , Simulação de Dinâmica Molecular , Tropomiosina/metabolismo
5.
Biochem Biophys Res Commun ; 551: 27-32, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33714756

RESUMO

Tropomyosin and troponin regulate muscle contraction by participating in a macromolecular scale steric-mechanism to control myosin-crossbridge - actin interactions and consequently contraction. At low-Ca2+, the C-terminal 30% of troponin subunit-I (TnI) is proposed to trap tropomyosin in a position on thin filaments that sterically interferes with myosin-binding, thus causing muscle relaxation. In contrast, at high-Ca2+, inhibition is released after the C-terminal domains dissociate from F-actin-tropomyosin as its component switch-peptide domain binds to the N-lobe of troponin-C (TnC). Recent, paradigm-shifting, cryo-EM reconstructions by the Namba group have revealed density attributed to TnI along cardiac muscle thin filaments at both low- and high-Ca2+ concentration. Modeling the reconstructions showed expected high-Ca2+ hydrophobic interactions of the TnI switch-peptide and TnC. However, under low-Ca2+ conditions, sparse interactions of TnI and tropomyosin, and in particular juxtaposition of non-polar switch-peptide residues and charged tropomyosin amino acids in the published model seem difficult to reconcile with an expected steric-blocking conformation. This anomaly is likely due to inaccurate fitting of tropomyosin into the cryo-EM volume. In the current study, the low-Ca2+ cryo-EM volume was fitted with a more accurate tropomyosin model and representation of cardiac TnI. Our results show that at low-Ca2+ a cluster of hydrophobic residues at the TnI switch-peptide and adjacent H4 helix (Ala149, Ala151, Met 154, Leu159, Gly160, Ala161, Ala163, Leu167, Leu169, Ala171, Leu173) draw-in tropomyosin surface residues (Ile143, Ile146, Ala151, Ile154), presumably attracting the entire tropomyosin cable to its myosin-blocking position on actin. The modeling confirms that neighboring TnI "inhibitory domain" residues (Arg145, Arg148) bind to thin filaments at actin residue Asp25, as previously suggested. ClusPro docking of TnI residues 137-184 to actin-tropomyosin, including the TnI inhibitory-domain, switch-peptide and Helix H4, verified the modeled configuration. Our residue-to-residue contact-mapping of the TnI-tropomyosin association lends itself to experimental validation and functional localization of disease-bearing mutations.


Assuntos
Músculo Esquelético/metabolismo , Tropomiosina/metabolismo , Troponina I/química , Troponina I/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Cálcio/metabolismo , Microscopia Crioeletrônica , Humanos , Simulação de Acoplamento Molecular , Relaxamento Muscular , Músculo Esquelético/química , Ligação Proteica , Domínios Proteicos , Reprodutibilidade dos Testes , Tropomiosina/química , Troponina I/genética
6.
Biophys J ; 119(1): 75-86, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32521240

RESUMO

Experimental approaches such as fiber diffraction and cryo-electron microscopy reconstruction have defined regulatory positions of tropomyosin on actin but have not, as yet, succeeded at determining key atomic-level contacts between these proteins or fully substantiated the dynamics of their interactions at a structural level. To overcome this deficiency, we have previously employed computational approaches to deduce global dynamics of thin filament components by energy landscape determination and molecular dynamics simulations. Still, these approaches remain computationally challenging for any complex and large macromolecular assembly like the thin filament. For example, tropomyosin cable wrapping around actin of thin filaments features both head-to-tail polymeric interactions and local twisting, both of which depart from strict superhelical symmetry. This produces a complex energy surface that is difficult to model and thus to evaluate globally. Therefore, at this stage of our understanding, assessing global molecular dynamics can prove to be inherently impractical. As an alternative, we adopted a "divide and conquer" protocol to investigate actin-tropomyosin interactions at an atomistic level. Here, we first employed unbiased protein-protein docking tools to identify binding specificity of individual tropomyosin pseudorepeat segments over the actin surface. Accordingly, tropomyosin "ligand" segments were rotated and translated over potential "target" binding sites on F-actin where the corresponding interaction energetics of billions of conformational poses were ranked by the programs PIPER and ClusPro. These data were used to assess favorable interactions and then to rebuild models of seamless and continuous tropomyosin cables over the F-actin substrate, which were optimized further by flexible fitting routines and molecular dynamics. The models generated azimuthally distinct regulatory positions for tropomyosin cables along thin filaments on actin dominated by stereo-specific head-to-tail overlap linkage. The outcomes are in good agreement with current cryo-electron microscopy topology and consistent with long-thought residue-to-residue interactions between actin and tropomyosin.


Assuntos
Citoesqueleto de Actina , Tropomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Tropomiosina/metabolismo
7.
Biophys J ; 118(2): 303-312, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31882250

RESUMO

Muscle contraction is governed by tropomyosin (Tpm) shifting azimuthally between three states on F-actin (B-, C-, and M-states) in response to calcium binding to troponin and actomyosin cross-bridge formation. The Tpm coiled coil polymerizes head to tail along the long-pitch helix of F-actin to form continuous superhelical cables that wrap around the actin filaments. The end-to-end bonds formed between the N- and C-terminus of adjacent Tpm molecules define Tpm continuity and play a critical role in the ability of Tpm to cooperatively bind to actin, thus facilitating Tpm conformational switching to cooperatively propagate along F-actin. We expect that a missense mutation in this critical overlap region associated with dilated cardiomyopathy, A277V, will alter Tpm binding and thin filament activation by altering the overlap structure. Here, we used cosedimentation assays and in vitro motility assays to determine how the mutation alters Tpm binding to actin and its ability to regulate actomyosin interactions. Analytical viscometry coupled with molecular dynamics simulations showed that the A277V mutation results in enhanced Tpm end-to-end bond strength and a reduced curvature of the Tpm overlap domain. The mutant Tpm exhibited enhanced actin-Tpm binding affinity, consistent with overlap stabilization. The observed A277V-induced decrease in cooperative activation observed with regulated thin filament motility indicates that increased overlap stabilization is not correlated with Tpm-Tpm overlap binding strength or mechanical rigidity as is often assumed. Instead, A277V-induced structural changes result in local and delocalized increases in Tpm flexibility and prominent coiled-coil twisting in pseudorepeat 4. An A277V-induced decrease in Ca2+ sensitivity, consistent with a mutation-induced bolstering of the B-state Tpm-actin electrostatic contacts and an increased Tpm troponin T1 binding affinity, was also observed.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Mutação , Tropomiosina/genética , Tropomiosina/metabolismo , Actinas/metabolismo , Animais , Cardiomiopatias/metabolismo , Galinhas , Simulação de Dinâmica Molecular , Conformação Proteica , Tropomiosina/química
8.
Biophys J ; 118(2): 325-336, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864661

RESUMO

Complete description of thin filament conformational transitions accompanying muscle regulation requires ready access to atomic structures of actin-bound tropomyosin-troponin. To date, several molecular-docking protocols have been employed to identify troponin interactions on actin-tropomyosin because high-resolution experimentally determined structures of filament-associated troponin are not available. However, previously published all-atom models of the thin filament show chain separation and corruption of components during our molecular dynamics simulations of the models, implying artifactual subunit organization, possibly due to incorporation of unorthodox tropomyosin-TnT crystal structures and complex FRET measurements during model construction. For example, the recent Williams et al. (2016) atomistic model of the thin filament displays a paucity of salt bridges and hydrophobic complementarity between the TnT tail (TnT1) and tropomyosin, which is difficult to reconcile with the high, 20 nM Kd binding of TnT onto tropomyosin. Indeed, our molecular dynamics simulations show the TnT1 component in their model partially dissociates from tropomyosin in under 100 ns, whereas actin-tropomyosin and TnT1 models themselves remain intact. We therefore revisited computational work aiming to improve TnT1-thin filament models by employing unbiased docking methodologies, which test billions of trial rotations and translations of TnT1 over three-dimensional grids covering end-to-end bonded tropomyosin alone or tropomyosin on F-actin. We limited conformational searches to the association of well-characterized TnT1 helical domains and either isolated tropomyosin or actin-tropomyosin yet avoided docking TnT domains that lack known or predicted structure. The docking programs PIPER and ClusPro were used, followed by interaction energy optimization and extensive molecular dynamics. TnT1 docked to either side of isolated tropomyosin but uniquely onto one location of actin-bound tropomyosin. The antiparallel interaction with tropomyosin contained abundant salt bridges and intimately integrated hydrophobic networks joining TnT1 and the tropomyosin N-/C-terminal overlapping domain. The TnT1-tropomyosin linkage yields well-defined molecular crevices. Interaction energy measurements strongly favor this TnT1-tropomyosin design over previously proposed models.


Assuntos
Simulação de Acoplamento Molecular , Tropomiosina/metabolismo , Troponina T/metabolismo , Actinas/química , Actinas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Tropomiosina/química , Troponina T/química
9.
Biophys J ; 119(4): 821-830, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32730789

RESUMO

The motor protein myosin drives muscle and nonmuscle motility by binding to and moving along actin of thin filaments. Myosin binding to actin also modulates interactions of the regulatory protein, tropomyosin, on thin filaments, and conversely tropomyosin affects myosin binding to actin. Insight into this reciprocity will facilitate a molecular level elucidation of tropomyosin regulation of myosin interaction with actin in muscle contraction, and in turn, promote better understanding of nonmuscle cell motility. Indeed, experimental approaches such as fiber diffraction, cryoelectron microscopy, and three-dimensional reconstruction have long been used to define regulatory interaction of tropomyosin and myosin on actin at a structural level. However, their limited resolution has not proven sufficient to determine tropomyosin and myosin contacts at an atomic-level and thus to fully substantiate possible functional contributions. To overcome this deficiency, we have followed a hybrid approach by performing new cryogenic electron microscopy reconstruction of myosin-S1-decorated F-actin-tropomyosin together with atomic scale protein-protein docking of tropomyosin to the EM models. Here, cryo-EM data were derived from filaments reconstituted with α1-actin, cardiac αα-tropomyosin, and masseter muscle ß-myosin complexes; masseter myosin, which shares sequence identity with ß-cardiac myosin-heavy chain, was used because of its stability in vitro. The data were used to build an atomic model of the tropomyosin cable that fits onto the actin filament between the tip of the myosin head and a cleft on the innermost edge of actin subunits. The docking and atomic scale fitting showed multiple discrete interactions of myosin loop 4 and acidic residues on successive 39-42 residue-long tropomyosin pseudorepeats. The contacts between S1 and tropomyosin on actin appear to compete with and displace ones normally found between actin and tropomyosin on myosin-free thin filaments in relaxed muscle, thus restructuring the filament during myosin-induced activation.


Assuntos
Actinas , Tropomiosina , Citoesqueleto de Actina , Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Miosinas
10.
J Muscle Res Cell Motil ; 41(1): 23-38, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30771202

RESUMO

Tropomyosin, best known for its role in the steric regulation of muscle contraction, polymerizes head-to-tail to form cables localized along the length of both muscle and non-muscle actin-based thin filaments. In skeletal and cardiac muscles, tropomyosin, under the control of troponin and myosin, moves in a cooperative manner between blocked, closed and open positions on filaments, thereby masking and exposing actin-binding sites necessary for myosin crossbridge head interactions. While the coiled-coil signature of tropomyosin appears to be simple, closer inspection reveals surprising structural complexity required to perform its role in steric regulation. For example, component α-helices of coiled coils are typically zippered together along a continuous core hydrophobic stripe. Tropomyosin, however, contains a number of anomalous, functionally controversial, core amino acid residues. We argue that the atypical residues at this interface, including clusters of alanines and a charged aspartate, are required for preshaping tropomyosin to readily fit to the surface of the actin filament, but do so without compromising tropomyosin rigidity once the filament is assembled. Indeed, persistence length measurements of tropomyosin are characteristic of a semi-rigid cable, in this case conducive to cooperative movement on thin filaments. In addition, we also maintain that tropomyosin displays largely unrecognized and residue-specific torsional variance, which is involved in optimizing contacts between actin and tropomyosin on the assembled thin filament. Corresponding twist-induced stiffness may also enhance cooperative translocation of tropomyosin across actin filaments. We conclude that anomalous core residues of tropomyosin facilitate thin filament regulatory behavior in a multifaceted way.


Assuntos
Citoesqueleto de Actina/metabolismo , Tropomiosina/metabolismo , Humanos , Modelos Moleculares
11.
Biophys J ; 116(12): 2275-2284, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31130236

RESUMO

The initial binding of tropomyosin onto actin filaments and then its polymerization into continuous cables on the filament surface must be precisely tuned to overall thin-filament structure, function, and performance. Low-affinity interaction of tropomyosin with actin has to be sufficiently strong to localize the tropomyosin on actin, yet not so tight that regulatory movement on filaments is curtailed. Likewise, head-to-tail association of tropomyosin molecules must be favorable enough to promote tropomyosin cable formation but not so tenacious that polymerization precedes filament binding. Arguably, little molecular detail on early tropomyosin binding steps has been revealed since Wegner's seminal studies on filament assembly almost 40 years ago. Thus, interpretation of mutation-based actin-tropomyosin binding anomalies leading to cardiomyopathies cannot be described fully. In vitro, tropomyosin binding is masked by explosive tropomyosin polymerization once cable formation is initiated on actin filaments. In contrast, in silico analysis, characterizing molecular dynamics simulations of single wild-type and mutant tropomyosin molecules on F-actin, is not complicated by tropomyosin polymerization at all. In fact, molecular dynamics performed here demonstrates that a midpiece tropomyosin domain is essential for normal actin-tropomyosin interaction and that this interaction is strictly conserved in a number of tropomyosin mutant species. Elsewhere along these mutant molecules, twisting and bending corrupts the tropomyosin superhelices as they "lose their grip" on F-actin. We propose that residual interactions displayed by these mutant tropomyosin structures with actin mimic ones that occur in early stages of thin-filament generation, as if the mutants are recapitulating the assembly process but in reverse. We conclude therefore that an initial binding step in tropomyosin assembly onto actin involves interaction of the essential centrally located domain.


Assuntos
Actinas/metabolismo , Simulação de Dinâmica Molecular , Mutação , Tropomiosina/genética , Tropomiosina/metabolismo , Sequência de Aminoácidos , Ligação Proteica/genética , Estrutura Secundária de Proteína , Tropomiosina/química
12.
J Biol Chem ; 293(27): 10646-10662, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769321

RESUMO

Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD glycosylation provides interactions with the sialic acid-binding site of IAV, and a tripeptide loop at the lectin-binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neck-CRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure, including the lectin site conformation, but revealed a potential second nonlectin-binding site for glycans. IAV hemagglutination inhibition, IAV aggregation, and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn-303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3)-sialylated oligosaccharides. Glycan-binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures, whereas RhNCRD bound polylactosamine-containing glycans. The presence of the N-glycan in the CRD increases the glycan-binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform the design of recombinant SP-D-based antiviral drugs.


Assuntos
Imunidade Inata/imunologia , Vírus da Influenza A/imunologia , Lectinas/metabolismo , Infecções por Orthomyxoviridae/prevenção & controle , Polissacarídeos/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Ácidos Siálicos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Configuração de Carboidratos , Glicosilação , Testes de Inibição da Hemaglutinação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Polissacarídeos/química , Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/genética , Homologia de Sequência , Suínos
13.
Biophys J ; 115(6): 1082-1092, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30195938

RESUMO

Often considered an archetypal dimeric coiled coil, tropomyosin nonetheless exhibits distinctive "noncanonical" core residues located at the hydrophobic interface between its component α-helices. Notably, a charged aspartate, D137, takes the place of nonpolar residues otherwise present. Much speculation has been offered to rationalize potential local coiled-coil instability stemming from D137 and its effect on regulatory transitions of tropomyosin over actin filaments. Although experimental approaches such as electron cryomicroscopy reconstruction are optimal for defining average tropomyosin positions on actin filaments, to date, these methods have not captured the dynamics of tropomyosin residues clustered around position 137 or elsewhere. In contrast, computational biochemistry, involving molecular dynamics simulation, is a compelling choice to extend the understanding of local and global tropomyosin behavior on actin filaments at high resolution. Here, we report on molecular dynamics simulation of actin-free and actin-associated tropomyosin, showing noncanonical residue D137 as a locus for tropomyosin twist variation, with marked effects on actin-tropomyosin interactions. We conclude that D137-sponsored coiled-coil twisting is likely to optimize electrostatic side-chain contacts between tropomyosin and actin on the assembled thin filament, while offsetting disparities between tropomyosin pseudorepeat and actin subunit periodicities. We find that D137 has only minor local effects on tropomyosin coiled-coil flexibility, (i.e., on its flexural mobility). Indeed, D137-associated overtwisting may actually augment tropomyosin stiffness on actin filaments. Accordingly, such twisting-induced stiffness of tropomyosin is expected to enhance cooperative regulatory translocation of the tropomyosin cable over actin.


Assuntos
Actinas/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice
14.
Arch Biochem Biophys ; 647: 84-92, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29626422

RESUMO

Calcium regulation of cardiac muscle contraction is controlled by the thin-filament proteins troponin and tropomyosin bound to actin. In the absence of calcium, troponin-tropomyosin inhibits myosin-interactions on actin and induces muscle relaxation, whereas the addition of calcium relieves the inhibitory constraint to initiate contraction. Many mutations in thin filament proteins linked to cardiomyopathy appear to disrupt this regulatory switching. Here, we tested perturbations caused by mutant tropomyosins (E40K, DCM; and E62Q, HCM) on intra-filament interactions affecting acto-myosin interactions including those induced further by myosin association. Comparison of wild-type and mutant human α-tropomyosin (Tpm1.1) behavior was carried out using in vitro motility assays and molecular dynamics simulations. Our results show that E62Q tropomyosin destabilizes thin filament off-state function by increasing calcium-sensitivity, but without apparent affect on global tropomyosin structure by modifying coiled-coil rigidity. In contrast, the E40K mutant tropomyosin appears to stabilize the off-state, demonstrates increased tropomyosin flexibility, while also decreasing calcium-sensitivity. In addition, the E40K mutation reduces thin filament velocity at low myosin concentration while the E62Q mutant tropomyosin increases velocity. Corresponding molecular dynamics simulations indicate specific residue interactions that are likely to redefine underlying molecular regulatory mechanisms, which we propose explain the altered contractility evoked by the disease-causing mutations.


Assuntos
Cardiomiopatias/genética , Miosinas/metabolismo , Mutação Puntual , Tropomiosina/genética , Troponina/metabolismo , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Mapas de Interação de Proteínas , Tropomiosina/química , Tropomiosina/metabolismo
15.
Biophys J ; 113(11): 2444-2451, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29211998

RESUMO

Elongated tropomyosin, associated with actin-subunits along the surface of thin filaments, makes electrostatic interactions with clusters of conserved residues, K326, K328, and R147, on actin. The association is weak, permitting low-energy cost regulatory movement of tropomyosin across the filament during muscle activation. Interestingly, acidic D292 on actin, also evolutionarily conserved, lies adjacent to the three-residue cluster of basic amino acids and thus may moderate the combined local positive charge, diminishing tropomyosin-actin interaction and facilitating regulatory-switching. Indeed, charge neutralization of D292 is connected to muscle hypotonia in individuals with D292V actin mutations and linked to congenital fiber-type disproportion. Here, the D292V mutation may predispose tropomyosin-actin positioning to a myosin-blocking state, aberrantly favoring muscle relaxation, thus mimicking the low-Ca2+ effect of troponin even in activated muscles. To test this hypothesis, interaction energetics and in vitro function of wild-type and D292V filaments were measured. Energy landscapes based on F-actin-tropomyosin models show the mutation localizes tropomyosin in a blocked-state position on actin defined by a deeper energy minimum, consistent with augmented steric-interference of actin-myosin binding. In addition, whereas myosin-dependent motility of troponin/tropomyosin-free D292V F-actin is normal, motility is dramatically inhibited after addition of tropomyosin to the mutant actin. Thus, D292V-induced blocked-state stabilization appears to disrupt the delicately poised energy balance governing thin filament regulation. Our results validate the premise that stereospecific but necessarily weak binding of tropomyosin to F-actin is required for effective thin filament function.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Tropomiosina/metabolismo , Actinas/química , Actinas/genética , Cálcio/metabolismo , Humanos , Modelos Moleculares , Mutação , Miosinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Eletricidade Estática , Termodinâmica
16.
Biochemistry ; 56(31): 4095-4105, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28719181

RESUMO

Lung surfactant proteins (SPs) play critical roles in surfactant function and innate immunity. SP-A and SP-D, members of the collectin family of C-type lectins, exhibit distinct ligand specificities, effects on surfactant structure, and host defense functions despite extensive structural homology. SP-A binds to dipalmitoylphosphatidylcholine (DPPC), the major surfactant lipid component, but not phosphatidylinositol (PI), whereas SP-D shows the opposite preference. Additionally, SP-A and SP-D recognize widely divergent pathogen-associated molecular patterns. Previous studies suggested that a ligand-induced surface loop conformational change unique to SP-A contributes to lipid binding affinity. To test this hypothesis and define the structural features of SP-A and SP-D that determine their ligand binding specificities, a structure-guided approach was used to introduce key features of SP-D into SP-A. A quadruple mutant (E171D/P175E/R197N/K203D) that introduced an SP-D-like loop-stabilizing calcium binding site into the carbohydrate recognition domain was found to interconvert SP-A ligand binding preferences to an SP-D phenotype, exchanging DPPC for PI specificity, and resulting in the loss of lipid A binding and the acquisition of more avid mannan binding properties. Mutants with constituent single or triple mutations showed alterations in their lipid and sugar binding properties that were intermediate between those of SP-A and SP-D. Structures of mutant complexes with inositol or methyl-mannose revealed an attenuation of the ligand-induced conformational change relative to wild-type SP-A. These studies suggest that flexibility in a key surface loop supports the distinctive lipid binding functions of SP-A, thus contributing to its multiple functions in surfactant structure and regulation, and host defense.


Assuntos
Modelos Moleculares , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Cinética , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Ligantes , Lipídeo A/química , Lipídeo A/metabolismo , Lipossomos , Mutagênese Sítio-Dirigida , Mutação , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Estabilidade Proteica , Proteína A Associada a Surfactante Pulmonar/química , Proteína A Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/genética , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
17.
Biochemistry ; 55(26): 3692-701, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27324153

RESUMO

Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.


Assuntos
Cristalografia por Raios X/métodos , Proteolipídeos/metabolismo , Proteína A Associada a Surfactante Pulmonar/química , Proteína A Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animais , Sítios de Ligação , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Conformação Proteica , Proteína A Associada a Surfactante Pulmonar/genética , Ratos
18.
Arch Biochem Biophys ; 609: 51-58, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663225

RESUMO

A canonical model of muscle α-tropomyosin (Tpm1.1), based on molecular-mechanics and electron microscopy of different contractile states, shows that the two-stranded coiled-coiled is pre-bent to present a specific molecular-face to the F-actin filament. This conformation is thought to facilitate both filament assembly and tropomyosin sliding across actin to modulate myosin-binding. However, to bind effectively to actin filaments, the 42 nm-long tropomyosin coiled-coil is not strictly canonical. Here, the mid-region of tropomyosin twists an additional ∼20° in order to better match the F-actin helix. In addition, the N- and C-terminal regions of tropomyosin polymerize head-to-tail to form continuous super-helical cables. In this case, 9 to 10 residue-long overlapping domains between adjacent molecules untwist relative to each other to accommodate orthogonal interactions between chains in the junctional four-helix nexus. Extensive molecular dynamics simulations show that the twisting and untwisting motions of tropomyosin vary appreciably along tropomyosin length, and in particular that substantial terminal domain winding and unwinding occurs whether tropomyosin is bound to F-actin or not. The local and regional twisting and untwisting do not appear to proceed in a concerted fashion, resembling more of a "wringing-type" behavior rather than a rotation.


Assuntos
Actinas/química , Tropomiosina/química , Citoesqueleto de Actina/metabolismo , Animais , Galinhas , Biologia Computacional , Simulação de Dinâmica Molecular , Contração Muscular , Músculos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Coelhos , Ratos
19.
J Muscle Res Cell Motil ; 36(6): 525-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26286845

RESUMO

Azimuthal movement of tropomyosin around the F-actin thin filament is responsible for muscle activation and relaxation. Recently a model of αα-tropomyosin, derived from molecular-mechanics and electron microscopy of different contractile states, showed that tropomyosin is rather stiff and pre-bent to present one specific face to F-actin during azimuthal transitions. However, a new model based on cryo-EM of troponin- and myosin-free filaments proposes that the interacting-face of tropomyosin can differ significantly from that in the original model. Because resolution was insufficient to assign tropomyosin side-chains, the interacting-face could not be unambiguously determined. Here, we use structural analysis and energy landscapes to further examine the proposed models. The observed bend in seven crystal structures of tropomyosin is much closer in direction and extent to the original model than to the new model. Additionally, we computed the interaction map for repositioning tropomyosin over the F-actin surface, but now extended over a much larger surface than previously (using the original interacting-face). This map shows two energy minima-one corresponding to the "blocked-state" as in the original model, and the other related by a simple 24 Å translation of tropomyosin parallel to the F-actin axis. The tropomyosin-actin complex defined by the second minimum fits perfectly into the recent cryo-EM density, without requiring any change in the interacting-face. Together, these data suggest that movement of tropomyosin between regulatory states does not require interacting-face rotation. Further, they imply that thin filament assembly may involve an interplay between initially seeded tropomyosin molecules growing from distinct binding-site regions on actin.


Assuntos
Actinas/metabolismo , Tropomiosina/metabolismo , Sítios de Ligação , Modelos Moleculares , Movimento/fisiologia , Contração Muscular/fisiologia , Miosinas/metabolismo , Ligação Proteica , Eletricidade Estática , Troponina/metabolismo
20.
Immunology ; 142(1): 1-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24219801

RESUMO

Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B-cell epitopes, those parts of microbial antigens that contact the variable regions of the protective antibodies, can lead to development of antibody therapeutics, guide vaccine design, enable assessment of protective antibody responses in infected or vaccinated individuals, and uncover or localize pathogenic microbial functions that could be targeted by novel antimicrobials. Monoclonal antibodies are required to link in vivo or in vitro protective effects to specific epitopes and may be obtained from experimental animals or from humans, and their binding can be localized to specific regions of antigens by immunochemical assays. The epitopes are then identified with mapping methods such as X-ray crystallography of antigen-antibody complexes, antibody inhibition of hydrogen-deuterium exchange in the antigen, antibody-induced alteration of the nuclear magnetic resonance spectrum of the antigen, and experimentally validated computational docking of antigen-antibody complexes. The diversity in shape, size and structure of protective B-cell epitopes, and the increasing importance of protective B-cell epitope discovery to development of vaccines and antibody therapeutics are illustrated through examples from different microbe categories, with emphasis on epitopes targeted by broadly neutralizing antibodies to pathogens of high antigenic variation. Examples include the V-shaped Ab52 glycan epitope in the O-antigen of Francisella tularensis, the concave CR6261 peptidic epitope in the haemagglutinin stem of influenza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in the gp120 V1/V2 loop of HIV type 1.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Vacinas Bacterianas/uso terapêutico , Epitopos de Linfócito B/imunologia , Vacinas Virais/uso terapêutico , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Antígenos de Bactérias/química , Antígenos Virais/química , Vacinas Bacterianas/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Humanos , Modelos Moleculares , Conformação Proteica , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa