Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biol Chem ; 293(47): 18218-18229, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30262665

RESUMO

Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53+/-pp5+/- or p53+/-pp5-/- mice revealed that complete loss of PP5 reduces tumorigenesis in the p53+/- mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress.


Assuntos
Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Motivos de Aminoácidos , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
2.
J Biol Chem ; 291(47): 24475-24486, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27687725

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) and runt-related transcription factor 2 (RUNX2) are key regulators of mesenchymal stem cell (MSC) differentiation toward adipocytes and osteoblasts, respectively. Post-translational modifications of these factors determine their activities. Dephosphorylation of PPARγ at Ser-112 is required for its adipocytic activity, whereas phosphorylation of RUNX2 at serine 319 (Ser-319) promotes its osteoblastic activity. Here we show that protein phosphatase 5 (PP5) reciprocally regulates each receptor by targeting each serine. Mice deficient in PP5 phosphatase have increased osteoblast numbers and high bone formation, which results in high bone mass in the appendicular and axial skeleton. This is associated with a substantial decrease in lipid-containing marrow adipocytes. Indeed, in the absence of PP5 the MSC lineage allocation is skewed toward osteoblasts and away from lipid accumulating adipocytes, although an increase in beige adipocyte gene expression is observed. In the presence of rosiglitazone, PP5 translocates to the nucleus, binds to PPARγ and RUNX2, and dephosphorylates both factors, resulting in activation of PPARγ adipocytic and suppression of RUNX2 osteoblastic activities. Moreover, shRNA knockdown of PP5 results in cells refractory to rosiglitazone treatment. Lastly, mice deficient in PP5 are resistant to the negative effects of rosiglitazone on bone, which in wild type animals causes a 50% decrease in trabecular bone mass. In conclusion, PP5 is a unique phosphatase reciprocally regulating PPARγ and RUNX2 activities in marrow MSC.


Assuntos
Peso Corporal/efeitos dos fármacos , Osso e Ossos/metabolismo , Núcleo Celular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicoproteínas/metabolismo , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Animais , Peso Corporal/genética , Núcleo Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Glicoproteínas/genética , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , PPAR gama/genética , Rosiglitazona
3.
J Biol Chem ; 291(15): 8121-9, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26846848

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed at high levels in the hepatocyte, consistent with its role in promoting insulin clearance in liver. CEACAM1 also mediates a negative acute effect of insulin on fatty acid synthase activity. Western blot analysis reveals lower hepatic CEACAM1 expression during fasting. Treating of rat hepatoma FAO cells with Wy14,643, an agonist of peroxisome proliferator-activated receptor α (PPARα), rapidly reduces Ceacam1 mRNA and CEACAM1 protein levels within 1 and 2 h, respectively. Luciferase reporter assay shows a decrease in the promoter activity of both rat and mouse genes by Pparα activation, and 5'-deletion and block substitution analyses reveal that the Pparα response element between nucleotides -557 and -543 is required for regulation of the mouse promoter activity. Chromatin immunoprecipitation analysis demonstrates binding of liganded Pparα toCeacam1promoter in liver lysates ofPparα(+/+), but notPparα(-/-)mice fed a Wy14,643-supplemented chow diet. Consequently, Wy14,643 feeding reduces hepatic Ceacam1 mRNA and CEACAM1 protein levels, thus decreasing insulin clearance to compensate for compromised insulin secretion and maintain glucose homeostasis and insulin sensitivity in wild-type mice. Together, the data show that the low hepatic CEACAM1 expression at fasting is mediated by Pparα-dependent mechanisms. Changes in CEACAM1 expression contribute to the coordination of fatty acid oxidation and insulin action in the fasting-refeeding transition.


Assuntos
Antígenos CD/genética , Moléculas de Adesão Celular/genética , Jejum , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , PPAR alfa/metabolismo , Animais , Antígenos CD/análise , Antígenos CD/metabolismo , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Deleção de Genes , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Ratos
4.
Am J Physiol Endocrinol Metab ; 310(4): E249-57, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26714851

RESUMO

Glucocorticoid hormones (GCs) are important regulators of lipid metabolism, promoting lipolysis with acute treatment but lipogenesis with chronic exposure. Conventional wisdom posits that these disparate outcomes are mediated by the classical glucocorticoid receptor GRα. There is insufficient knowledge of the GC receptors (GRα and GRß) in metabolic conditions such as obesity and diabetes. We present acute models of GC exposure that induce lipolysis, such as exercise, as well as chronic-excess models that cause obesity and lipid accumulation in the liver, such as hepatic steatosis. Alternative mechanisms are then proposed for the lipogenic actions of GCs, including induction of GC resistance by the GRß isoform, and promotion of lipogenesis by GC activation of the mineralocorticoid receptor (MR). Finally, the potential involvement of chaperone proteins in the regulation of adipogenesis is considered. This reevaluation may prove useful to future studies on the steroidal basis of adipogenesis and obesity.


Assuntos
Fígado Gorduroso/metabolismo , Glucocorticoides/metabolismo , Obesidade/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos , Lipogênese , Lipólise , Receptores de Mineralocorticoides/metabolismo
6.
Biochim Biophys Acta ; 1823(3): 722-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155719

RESUMO

The molecular chaperone Hsp90 is abundant, ubiquitous, and catholic to biological processes in eukaryotes, controlling phosphorylation cascades, protein stability and turnover, client localization and trafficking, and ligand-receptor interactions. Not surprisingly, Hsp90 does not accomplish these activities alone. Instead, an ever-growing number of cochaperones have been identified, leading to an explosion of reports on their molecular and cellular effects on Hsp90 chaperoning of client substrates. Notable among these clients are many members of the steroid receptor family, such as glucocorticoid, androgen, estrogen and progesterone receptors. Cochaperones typically associated with the mature, hormone-competent states of these receptors include p23, the FK506-binding protein 52 (FKBP52), FKBP51, protein phosphatase 5 (PP5) and cyclophilin 40 (Cyp40). The ultimate relevance of these cochaperones to steroid receptor action depends on their physiological effects. In recent years, the first mouse genetic models of these cochaperones have been developed. This work will review the complex and intriguing phenotypes so far obtained in genetically-altered mice and compare them to the known molecular and cellular impacts of cochaperones on steroid receptors. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).


Assuntos
Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Receptores de Esteroides/fisiologia , Animais , Camundongos , Modelos Genéticos
7.
BMC Cell Biol ; 14: 39, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24053798

RESUMO

BACKGROUND: Differentiation and fusion of skeletal muscle myoblasts into multi-nucleated myotubes is required for neonatal development and regeneration in adult skeletal muscle. Herein, we report novel findings that protein kinase C theta (PKCθ) regulates myoblast differentiation via phosphorylation of insulin receptor substrate-1 and ERK1/2. RESULTS: In this study, PKCθ knockdown (PKCθshRNA) myotubes had reduced inhibitory insulin receptor substrate-1 ser1095 phosphorylation, enhanced myoblast differentiation and cell fusion, and increased rates of protein synthesis as determined by [3H] phenylalanine incorporation. Phosphorylation of insulin receptor substrate-1 ser632/635 and extracellular signal-regulated kinase1/2 (ERK1/2) was increased in PKCθshRNA cells, with no change in ERK5 phosphorylation, highlighting a PKCθ-regulated myogenic pathway. Inhibition of PI3-kinase prevented cell differentiation and fusion in control cells, which was attenuated in PKCθshRNA cells. Thus, with reduced PKCθ, differentiation and fusion occur in the absence of PI3-kinase activity. Inhibition of the ERK kinase, MEK1/2, impaired differentiation and cell fusion in control cells. Differentiation was preserved in PKCθshRNA cells treated with a MEK1/2 inhibitor, although cell fusion was blunted, indicating PKCθ regulates differentiation via IRS1 and ERK1/2, and this occurs independently of MEK1/2 activation. CONCLUSION: Cellular signaling regulating the myogenic program and protein synthesis are complex and intertwined. These studies suggest that PKCθ regulates myogenic and protein synthetic signaling via the modulation of IRS1and ERK1/2 phosphorylation. Myotubes lacking PKCθ had increased rates of protein synthesis and enhanced myotube development despite reduced activation of the canonical anabolic-signaling pathway. Further investigation of PKCθ regulated signaling may reveal important interactions regulating skeletal muscle health in an insulin resistant state.


Assuntos
Proteínas Substratos do Receptor de Insulina/genética , Isoenzimas/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Proteína Quinase C/genética , Animais , Diferenciação Celular , Fusão Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Substratos do Receptor de Insulina/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
8.
J Biol Chem ; 286(50): 43071-80, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22030396

RESUMO

FK506-binding protein 38 (FKBP38), a membrane-anchored, tetratricopeptide repeat (TPR)-containing immunophilin, associates with nascent plasma membrane ion channels in the endoplasmic reticulum (ER). It promotes the maturation of the human ether-à-go-go-related gene (HERG) potassium channel and maintains the steady state level of the cystic fibrosis transmembrane conductance regulator (CFTR), but the underlying mechanisms remain unclear. Using a combination of steady state and pulse-chase analyses, we show that FKBP38 knockdown increases protein synthesis but inhibits the post-translational folding of CFTR, leading to reduced steady state levels of CFTR in the ER, decreased processing, and impaired cell surface functional expression in Calu-3 human airway epithelial cells. The membrane anchorage of FKBP38 is necessary for the inhibition of protein synthesis but not for CFTR post-translational folding. In contrast, the peptidylprolyl cis/trans isomerase active site is utilized to promote CFTR post-translational folding but is not important for regulation of protein synthesis. Uncoupling FKBP38 from Hsp90 by substituting a conserved lysine in the TPR domain modestly enhances CFTR maturation and further reduces its synthesis. Removing the N-terminal glutamate-rich domain (ERD) slightly enhances CFTR synthesis but reduces its maturation, suggesting that the ERD contributes to FKBP38 biological activities. Our data support a dual role for FKBP38 in regulating CFTR synthesis and post-translational folding. In contrast to earlier prediction but consistent with in vitro enzymological studies, FKBP38 peptidylprolyl cis/trans isomerase plays an important role in membrane protein biogenesis on the cytoplasmic side of the ER membrane, whose activity is negatively regulated by Hsp90 through the TPR domain.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Immunoblotting , Ligação Proteica , Dobramento de Proteína , RNA Interferente Pequeno/genética , Proteínas de Ligação a Tacrolimo/genética
9.
J Biol Chem ; 286(50): 42911-22, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21994940

RESUMO

Glucocorticoid receptor-α (GRα) and peroxisome proliferator-activated receptor-γ (PPARγ) regulate adipogenesis by controlling the balance between lipolysis and lipogenesis. Here, we show that protein phosphatase 5 (PP5), a nuclear receptor co-chaperone, reciprocally modulates the lipometabolic activities of GRα and PPARγ. Wild-type and PP5-deficient (KO) mouse embryonic fibroblast cells were used to show binding of PP5 to both GRα and PPARγ. In response to adipogenic stimuli, PP5-KO mouse embryonic fibroblast cells showed almost no lipid accumulation with reduced expression of adipogenic markers (aP2, CD36, and perilipin) and low fatty-acid synthase enzymatic activity. This was completely reversed following reintroduction of PP5. Loss of PP5 increased phosphorylation of GRα at serines 212 and 234 and elevated dexamethasone-induced activity at prolipolytic genes. In contrast, PPARγ in PP5-KO cells was hyperphosphorylated at serine 112 but had reduced rosiglitazone-induced activity at lipogenic genes. Expression of the S112A mutant rescued PPARγ transcriptional activity and lipid accumulation in PP5-KO cells pointing to Ser-112 as an important residue of PP5 action. This work identifies PP5 as a fulcrum point in nuclear receptor control of the lipolysis/lipogenesis equilibrium and as a potential target in the treatment of obesity.


Assuntos
Proteínas Nucleares/metabolismo , PPAR gama/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Receptores de Glucocorticoides/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Western Blotting , Células Cultivadas , Dexametasona/farmacologia , Eletroforese , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Camundongos , Proteínas Nucleares/genética , PPAR gama/genética , Fosfoproteínas Fosfatases/genética , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/genética
10.
J Biol Chem ; 285(36): 27776-84, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20605780

RESUMO

Hypospadias is a common birth defect in humans, yet its etiology and pattern of onset are largely unknown. Recent studies have shown that male mice with targeted ablation of FK506-binding protein-52 (Fkbp52) develop hypospadias, most likely due to actions of Fkbp52 as a molecular co-chaperone of the androgen receptor (AR). Here, we further dissect the developmental and molecular mechanisms that underlie hypospadias in Fkbp52-deficient mice. Scanning electron microscopy revealed a defect in the elevation of prepucial swelling that led to the onset of the ventral penile cleft. Interestingly, expression of Fkbp52 was highest in the ventral aspect of the developing penis that undergoes fusion of the urethral epithelium. Although in situ hybridization and immunohistochemical analyses suggested that Fkbp52 mutants had a normal urethral epithelium signaling center and epithelial differentiation, a reduced apoptotic cell index at ventral epithelial cells at the site of fusion and a defect of genital mesenchymal cell migration were observed. Supplementation of gestating females with excess testosterone partially rescued the hypospadic phenotype in Fkbp52 mutant males, showing that loss of Fkbp52 desensitizes AR to hormonal activation. Direct measurement of AR activity was performed in mouse embryonic fibroblast cells treated with dihydrotestosterone or synthetic agonist R1881. Reduced AR activity at genes controlling sexual dimorphism and cell growth was found in Fkbp52-deficient mouse embryonic fibroblast cells. However, chromatin immunoprecipitation analysis revealed normal occupancy of AR at gene promoters, suggesting that Fkbp52 exerts downstream effects on the transactivation function of AR. Taken together, our data show Fkbp52 to be an important molecular regulator in the androgen-mediated pathway of urethra morphogenesis.


Assuntos
Receptores Androgênicos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Ativação Transcricional , Uretra/crescimento & desenvolvimento , Uretra/metabolismo , Animais , Apoptose , Linhagem Celular , Movimento Celular , Proliferação de Células , Embrião de Mamíferos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipospadia/tratamento farmacológico , Hipospadia/genética , Hipospadia/metabolismo , Masculino , Mesoderma/citologia , Camundongos , Microscopia Eletrônica de Varredura , Mutação , Receptores Androgênicos/genética , Elementos de Resposta/genética , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/genética , Testosterona/uso terapêutico , Uretra/citologia , Uretra/ultraestrutura
11.
Trends Endocrinol Metab ; 32(11): 862-874, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481731

RESUMO

The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.


Assuntos
Receptores de Glucocorticoides , Proteínas de Ligação a Tacrolimo , Glucocorticoides/farmacologia , Humanos , Chaperonas Moleculares/metabolismo , Fosforilação , Receptores de Glucocorticoides/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
12.
J Steroid Biochem Mol Biol ; 113(1-2): 36-45, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19073255

RESUMO

FKBP52 is a tetratricopeptide repeat (TPR) protein with peptidyl-prolyl isomerase activity and is found in steroid receptor complexes, including glucocorticoid receptor (GR). It is generally accepted that FKBP52 has a stimulatory effect on GR transcriptional activity. However, the mechanism by which FKBP52 controls GR is not yet clear, with reports showing effects on GR hormone-binding affinity and/or hormone-induced nuclear translocation. To address this issue, we have generated mice with targeted ablation of the FKBP52 gene. To date, no overt defects of GR-regulated physiology have been found in these animals, demonstrating that FKBP52 is not an essential regulator of global GR activity. To better assess the impact of FKBP52 on GR, mouse embryonic fibroblasts (MEFs) were generated from wild-type (WT) and FKBP52-deficient (KO) animals. Analysis of GR activity at reporter genes showed an approximate 70% reduction of activity in 52KO MEF cells, with no effect of FKBP52 loss on thyroid receptor. Interestingly, GR activity at endogenous genes was not globally affected in 52KO cells, with reduced activity at GILZ and FKBP51, but not at SGK and p21. Thus, FKBP52 appears to be a gene-specific modulator of GR. To investigate the mechanism of this action, analyses of GR heterocomplex composition, hormone-binding affinity, and ability to undergo hormone-induced nuclear translocation and DNA-binding were performed. Interestingly, no effect of FKBP52 loss was found for any of these GR properties, suggesting that the main function of FKBP52 is a heretofore-unknown ability to control GR activity at target genes. Lastly, loss of FKBP52 did not affect the ability of GR to undergo hormone-induced autologous down-regulation, showing that FKBP52 does not contribute to all branches of GR signaling. The implications of these results to the potential actions of FKBP52 on GR activity in vivo are discussed.


Assuntos
Regulação da Expressão Gênica , Marcação de Genes , Receptores de Glucocorticoides/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Transcrição Gênica , Animais , Núcleo Celular/metabolismo , Regulação para Baixo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/enzimologia , Genes Reporter , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas de Ligação a Tacrolimo/deficiência
13.
Steroids ; 141: 63-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30481528

RESUMO

Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII) is an orphan member of the nuclear receptor family of transcriptional regulators. Although hormonal activation of COUP-TFII has not yet been identified, rodent genetic models have uncovered vital and diverse roles for COUP-TFII in biological processes. These include control of cardiac function and angiogenesis, reproduction, neuronal development, cell fate and organogenesis. Recently, an emerging body of evidence has demonstrated COUP-TFII involvement in various metabolic systems such as adipogenesis, lipid metabolism, hepatic gluconeogenesis, insulin secretion, and regulation of blood pressure. The potential relevance of these observations to human pathology has been corroborated by the identification of single nucleotide polymorphism in the human COUP-TFII promoter controlling insulin sensitivity. Of particular interest to metabolism is the ability of COUP-TFII to interact with the Glucocorticoid Receptor (GR). This interaction is known to control gluconeogenesis, principally through direct binding of COUP-TFII/GR complexes to the promoters of gluconeogenic enzyme genes. However, it is likely that this interaction is critical to other metabolic processes, since GR, like COUP-TFII, is an essential regulator of adipogenesis, insulin sensitivity, and blood pressure. This review will highlight these unique roles of COUP-TFII in metabolic gene regulation.


Assuntos
Fator II de Transcrição COUP/metabolismo , Animais , Fator II de Transcrição COUP/genética , Regulação da Expressão Gênica , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
14.
Biochemistry ; 47(39): 10471-80, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18771283

RESUMO

The TPR proteins FKBP52, FKBP51, Cyp40, and PP5 are found in steroid receptor (SR) complexes, but their receptor-specific preferences and roles remain unresolved. We have undertaken a systematic approach to this problem by examining the contribution of all four TPRs to the localization properties of glucocorticoid (GR) and progesterone (PR) receptors. The GR of L929 cells was found in the cytoplasm in a complex containing PP5 and FKBP51, while the GR of WCL2 cells was nuclear and contained PP5 and FKBP52. Cyp40 did not interact with the GR in either cell line. To test whether FKBP interaction determined localization, we overexpressed Flag-tagged FKBP51 in WCL2 cells and Flag-FKBP52 in L929 cells. In WCL2 cells, the GR exhibited a shift to greater cytoplasmic localization that correlated with recruitment of Flag-FKBP51. In contrast, Flag-FKBP52 was not recruited to the GR of L929 cells, and no change in localization was observed, suggesting that both cell-type-specific mechanisms and TPR abundance contribute to the SR-TPR interaction. As a further test, GR-GFP and PR-GFP constructs were expressed in COS cells. The GR-GFP construct localized to the cytoplasm, while the PR-GFP construct was predominantly nuclear. Similar to L929 cells, the GR in COS interacted with PP5 and FKBP51, while PR interacted with FKBP52. Analysis of GR-PR chimeric constructs revealed that the ligand-binding domain of each receptor determines both TPR specificity and localization. Lastly, we analyzed GR and PR localization in cells completely lacking TPR. PR in FKBP52 KO cells showed a complete shift to the cytoplasm, while GR in FKBP51 KO and PP5 KO cells showed a moderate shift to the nucleus, indicating that both TPRs contribute to GR localization. Our results demonstrate that SRs have distinct preferences for TPR proteins, a property that resides in the LBD and which can now explain long-standing differences in receptor subcellular localization.


Assuntos
Oligopeptídeos/química , Oligopeptídeos/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/metabolismo , Animais , Sítios de Ligação , Células COS , Adesão Celular , Chlorocebus aethiops , Fibroblastos/citologia , Fibroblastos/fisiologia , Haplorrinos , Células L , Ligantes , Camundongos , Receptores de Glucocorticoides/química , Receptores de Progesterona/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos , Frações Subcelulares/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
15.
Int J Biochem Cell Biol ; 40(11): 2358-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17951098

RESUMO

Protein phosphatase 5 (PP5) is a unique member of the PPP family of serine/threonine phosphatases based on the presence of tetratricopeptide repeat (TPR) domains within its structure. Since its discovery, PP5 has been implicated in wide ranging cellular processes, including MAPK-mediated growth and differentiation, cell cycle arrest and DNA damage repair via the p53 and ATM/ATR pathways, regulation of ion channels via the membrane receptor for atrial natriuretic peptide, the cellular heat shock response as mediated by heat shock transcription factor, and steroid receptor signaling, especially glucocorticoid receptor (GR). Given this diversity of effects, the recent development of viable PP5-deficient mice was surprising and suggests that PP5 is a modulatory, rather than essential, factor in phosphorylation pathways. Here, we review the signaling involvement of PP5 in light of new findings and relate these activities to the structural features of the protein.


Assuntos
Isoenzimas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Humanos , Isoenzimas/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/metabolismo
16.
Oncotarget ; 9(78): 34772-34783, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30410676

RESUMO

FKBP51 (FK506-binding protein 51) is a known co-chaperone and regulator of the glucocorticoid receptor (GR), which usually attenuates its activity. FKBP51 is one of the major GR target genes in skin, but its role in clinical effects of glucocorticoids is not known. Here, we used FKBP51 knockout (KO) mice to determine FKBP51's role in the major adverse effect of topical glucocorticoids, skin atrophy. Unexpectedly, we found that all skin compartments (epidermis, dermis, dermal adipose and CD34+ stem cells) in FKBP51 KO animals were much more resistant to glucocorticoid-induced hypoplasia. Furthermore, despite the absence of inhibitory FKBP51, the basal level of expression and glucocorticoid activation of GR target genes were not increased in FKBP51 KO skin or CRISPR/Cas9-edited FKBP51 KO HaCaT human keratinocytes. FKBP51 is known to negatively regulate Akt and mTOR. We found a significant increase in AktSer473 and mTORSer2448 phosphorylation and downstream pro-growth signaling in FKBP51-deficient keratinocytes in vivo and in vitro. As Akt/mTOR-GR crosstalk is usually negative in skin, our results suggest that Akt/mTOR activation could be responsible for the lack of increased GR function and resistance of FKBP51 KO mice to the steroid-induced skin atrophy.

17.
Endocrinology ; 148(10): 4716-26, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17615153

RESUMO

The androgen receptor (AR) contributes to growth of prostate cancer even under conditions of androgen ablation. Thus, new strategies to target AR activity are needed. The AR interacts with the immunophilin FK506-binding protein 52 (FKBP52), and studies in the FKBP52 knockout mouse have shown that this protein is essential to AR activity in the prostate. Therefore, we tested whether the immunophilin ligand FK506 affected AR activity in prostate cancer cell lines. We also tested the hypothesis that the AR interacts with another immunophilin, cyclophilin 40 (Cyp40), and is regulated by its cognate ligand cyclosporin A (CsA). We show that levels of FKBP52, FKBP51, Cyp40, and a related co-chaperone PP5 were much higher in prostate cancer cells lines [(LNCaP), PC-3, and DU145] compared with primary prostate cells, and that the AR of LNCaP cells can interact with Cyp40. In the absence of androgen, CsA caused inhibition of cell growth in the AR-positive LNCaP and AR-negative PC-3 and DU145 cell lines. Interestingly, FK506 only inhibited LNCaP cells, suggesting a dependence on the AR for this effect. Both CsA and FK506 inhibited growth without inducing apoptosis. In LNCaP cells, CsA completely blocked androgen-stimulated growth, whereas FK506 was partially effective. Further studies in LNCaP cells revealed that CsA and FK506 were able to block or attenuate several stages of AR signaling, including hormone binding, nuclear translocation, and activity at several AR-responsive reporter and endogenous genes. These findings provide the first evidence that CsA and FK506 can negatively modulate proliferation of prostate cells in vitro. Immunophilins may now serve as new targets to disrupt AR-mediated prostate cancer growth.


Assuntos
Ciclosporina/farmacologia , Imunofilinas/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Tacrolimo/farmacologia , Androgênios/metabolismo , Androgênios/farmacologia , Transporte Biológico/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Ciclosporina/metabolismo , Di-Hidrotestosterona/farmacologia , Humanos , Ligantes , Masculino , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Receptores Androgênicos/genética , Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Transcrição Gênica/efeitos dos fármacos
18.
Mol Endocrinol ; 20(11): 2682-94, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16873445

RESUMO

FK506-binding protein 52 (FKBP52) is a tetratricopeptide repeat protein that associates with steroid receptors in complexes containing heat shock protein 90. To investigate the role of FKBP52 in steroid-regulated physiology, we generated FKBP52-deficient mice. FKBP52 (-/-) females are sterile due to a complete failure of implantation, a process that requires estrogen (ER) and progesterone receptors (PR). Because the uterus expresses two forms of PR, PR-A and PR-B, we investigated all three receptors as potential targets of FKBP52 action. FKBP52 (-/-) uteri showed a normal growth response to estradiol, and unaltered expression of genes controlled by ER and PR-B. In contrast, FKBP52 (-/-) uteri were neither able to express two PR-A-regulated genes, nor undergo decidualization in response to progesterone, suggesting that FKBP52 specifically regulates PR-A at this organ. Analysis of uterine PR heterocomplexes showed preferential association of FKBP52 with PR-A compared with PR-B. Loss of FKBP52 neither disrupted the PR-A/heat shock protein 90 interaction, nor impaired uterine PR-A hormone-binding function, demonstrating the essential role of FKBP52 in PR-A action to be downstream of the hormone-binding event. Transcription studies in +/+ and -/- mouse embryonic fibroblast cells showed a near-complete loss of PR-A activity at mouse mammary tumor virus and synthetic progesterone response element promoters, although partial reductions of ER and PR-B were also observed. Partial disruptions of ovulation and mammary development were also found in FKBP52 (-/-) females. Taken as a whole, our results show FKBP52 to be an essential regulator of PR-A action in the uterus, while being a nonessential but contributory regulator of steroid receptors in the mammary and ovary. These data may now provide the basis for selective targeting of steroid-regulated physiology through tetratricopeptide repeat proteins.


Assuntos
Receptores de Progesterona/fisiologia , Reprodução/fisiologia , Proteínas de Ligação a Tacrolimo/fisiologia , Útero/fisiologia , Animais , Células Cultivadas , Implantação do Embrião/genética , Embrião de Mamíferos/citologia , Feminino , Deleção de Genes , Infertilidade Feminina/genética , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovulação/genética , Progesterona/metabolismo , Ligação Proteica , Isoformas de Proteínas/fisiologia , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Ativação Transcricional
19.
PPAR Res ; 2016: 6218637, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190501

RESUMO

Nutrient overload and genetic factors have led to a worldwide epidemic of obesity that is the underlying cause of diabetes, atherosclerosis, and cardiovascular disease. In this study, we used macrolide drugs such as FK506, rapamycin, and macrolide derived, timcodar (VX-853), to determine their effects on lipid accumulation during adipogenesis. Rapamycin and FK506 bind to FK506-binding proteins (FKBPs), such as FKBP12, which causes suppression of the immune system and inhibition of mTOR. Rapamycin has been previously reported to inhibit the adipogenic process and lipid accumulation. However, rapamycin treatment in rodents caused immune suppression and glucose resistance, even though the mice lost weight. Here we show that timcodar (1 µM), a non-FKBP12-binding drug, significantly (p < 0.001) inhibited lipid accumulation during adipogenesis. A comparison of the same concentration of timcodar (1 µM) and rapamycin (1 µM) showed that both are inhibitors of lipid accumulation during adipogenesis. Importantly, timcodar potently (p < 0.01) suppressed transcriptional regulators of adipogenesis, PPARγ and C/EBPα, resulting in the inhibition of genes involved in lipid accumulation. These studies set the stage for timcodar as a possible antiobesity therapy, which is rapidly emerging as a pandemic.

20.
Endocrinology ; 157(10): 3888-3900, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27442117

RESUMO

FK506-binding protein-51 (FKBP51) is a molecular cochaperone recently shown to be a positive regulator of peroxisome proliferator-activated receptor (PPAR)γ, the master regulator of adipocyte differentiation and function. In cellular models of adipogenesis, loss of FKBP51 not only reduced PPARγ activity but also reduced lipid accumulation, suggesting that FKBP51 knock-out (KO) mice might have insufficient development of adipose tissue and lipid storage ability. This model was tested by examining wild-type (WT) and FKBP51-KO mice under regular and high-fat diet conditions. Under both diets, FKBP51-KO mice were resistant to weight gain, hepatic steatosis, and had greatly reduced white adipose tissue (WAT) but higher amounts of brown adipose tissue. Under high-fat diet, KO mice were highly resistant to adiposity and exhibited reduced plasma lipids and elevated glucose and insulin tolerance. Profiling of perigonadal and sc WAT revealed elevated expression of brown adipose tissue lineage genes in KO mice that correlated increased energy expenditure and a shift of substrate oxidation to carbohydrates, as measured by indirect calorimetry. To directly test PPARγ involvement, WT and KO mice were fed rosiglitazone agonist. In WT mice, rosiglitazone induced whole-body weight gain, increased WAT mass, a shift of substrate oxidation to lipids, and elevated expression of PPARγ-regulated lipogenic genes in WAT. In contrast, KO mice had reduced rosiglitazone responses for these parameters. Our results identify FKBP51 as an important regulator of PPARγ in WAT and as a potential new target in the treatment of obesity and diabetes.


Assuntos
Intolerância à Glucose , Metabolismo dos Lipídeos , Obesidade/etiologia , PPAR gama/fisiologia , Proteínas de Ligação a Tacrolimo/fisiologia , Adiposidade , Animais , Metabolismo Energético , Fígado Gorduroso/etiologia , Gordura Intra-Abdominal/citologia , Lipídeos/sangue , Masculino , Camundongos Knockout , Rosiglitazona , Tiazolidinedionas , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa