Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell Neurosci ; 118: 103693, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942345

RESUMO

Insulin and insulin-like growth factor type I (IGF-1) play prominent roles in brain activity throughout the lifespan. Insulin/IGF1 signaling starts with the activation of the intracellular insulin receptor substrates (IRS). In this work, we performed a comparative study of IRS1 and IRS2, together with the IGF1 (IGF1R) and insulin (IR) receptor expression in the hippocampus and prefrontal cortex during development. We found that IRS1 and IRS2 expression is prominent during development and declines in the aged hippocampus, contrary to IR, which increases in adulthood and aging. In contrast, IGF1R expression is unaffected by age. Expression patterns are similar in the prefrontal cortex. Neurite development occurs postnatally in the rodent hippocampus and cortex, and it declines in the mature and aged brain and is influenced by trophic factors. In our previous work, we demonstrated that knockdown of IRS1 by shRNA impairs learning and reduces synaptic plasticity in a rat model, as measured by synaptophysin puncta in axons. In this study, we report that shIRS1 alters spine maturation in adult hilar hippocampal neurons. Lastly, to understand the role of IRS1 in neuronal neurite tree, we transfect shIRS1 into primary neuronal cultures and observed that shIRS1 reduced neurite branching and neurite length. Our results demonstrate that IRS1/2 and insulin/IGF1 receptors display different age-dependent expression profiles and that IRS1 is required for spine maturation, demonstrating a novel role for IRS1 in synaptic plasticity.


Assuntos
Hipocampo , Proteínas Substratos do Receptor de Insulina , Insulina , Animais , Hipocampo/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Neurogênese , Ratos , Transdução de Sinais
2.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228179

RESUMO

Alzheimer's disease (AD), considered the most common type of dementia, is characterized by a progressive loss of memory, visuospatial, language and complex cognitive abilities. In addition, patients often show comorbid depression and aggressiveness. Aging is the major factor contributing to AD; however, the initial cause that triggers the disease is yet unknown. Scientific evidence demonstrates that AD, especially the late onset of AD, is not the result of a single event, but rather it appears because of a combination of risk elements with the lack of protective ones. A major risk factor underlying the disease is neuroinflammation, which can be activated by different situations, including chronic pathogenic infections, prolonged stress and metabolic syndrome. Consequently, many therapeutic strategies against AD have been designed to reduce neuro-inflammation, with very promising results improving cognitive function in preclinical models of the disease. The literature is massive; thus, in this review we will revise the translational evidence of these early strategies focusing in anti-diabetic and anti-inflammatory molecules and discuss their therapeutic application in humans. Furthermore, we review the preclinical and clinical data of nutraceutical application against AD symptoms. Finally, we introduce new players underlying neuroinflammation in AD: the activity of the endocannabinoid system and the intestinal microbiota as neuroprotectors. This review highlights the importance of a broad multimodal approach to treat successfully the neuroinflammation underlying AD.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Canabinoides/uso terapêutico , Hipoglicemiantes/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/fisiopatologia , Ensaios Clínicos como Assunto , Disfunção Cognitiva/genética , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Depressão/genética , Depressão/imunologia , Depressão/fisiopatologia , Depressão/prevenção & controle , Suplementos Nutricionais , Microbioma Gastrointestinal/imunologia , Humanos , Inflamação , Resistência à Insulina , Síndrome Metabólica/genética , Síndrome Metabólica/imunologia , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/prevenção & controle , Neuroimunomodulação/efeitos dos fármacos , Estresse Psicológico/genética , Estresse Psicológico/imunologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/prevenção & controle
3.
Cells ; 12(3)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766806

RESUMO

Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental syndrome characterized by dopaminergic dysfunction. In this study, we aimed to demonstrate that there is a link between dopaminergic deficit and neuroinflammation that underlies ADHD symptoms. We used a validated ADHD mice model involving perinatal 6-OHDA lesions. The animals received abscisic acid (ABA), an anti-inflammatory phytohormone, at a concentration of 20 mg/L (drinking water) for one month. We tested a battery of behavior tests, learning and memory, anxiety, social interactions, and pain thresholds in female and male mice (control and lesioned, with or without ABA treatment). Postmortem, we analyzed microglia morphology and Ape1 expression in specific brain areas related to the descending pain inhibitory pathway. In females, the dopaminergic deficit increased pain sensitivity but not hyperactivity. In contrast, males displayed hyperactivity but showed no increased pain sensitivity. In females, pain sensitivity was associated with inflammatory microglia and lower Ape1 levels in the anterior cingulate cortex (ACC) and posterior insula cortex (IC). In addition, ABA treatment alleviated pain sensitivity concomitant with reduced inflammation and normalized APE1. In males, ABA reduced hyperactivity but had no significant effect on inflammation in these areas. This is the first study proving a sex-dependent association between dopamine dysfunction and inflammation in specific brain areas, hence leading to different behavioral outcomes in a mouse model of ADHD. These findings provide new clues for potential treatments for ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Gravidez , Masculino , Feminino , Camundongos , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Ácido Abscísico/farmacologia , Doenças Neuroinflamatórias , Limiar da Dor , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo
4.
Front Pharmacol ; 14: 1288994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239187

RESUMO

Introduction: Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by hyperactivity, inattention, and impulsivity that often persist until adulthood. Frequent comorbid disorders accompany ADHD and two thirds of children diagnosed with ADHD also suffer from behavioural disorders and from alteration of sensory processing. We recently characterized the comorbidity between ADHD-like symptoms and pain sensitisation in a pharmacological mouse model of ADHD, and we demonstrated the implication of the anterior cingulate cortex and posterior insula. However, few studies have explored the causal mechanisms underlying the interactions between ADHD and pain. The implication of inflammatory mechanisms has been suggested but the signalling pathways involved have not been explored. Methods: We investigated the roles of purinergic signalling, at the crossroad of pain and neuroinflammatory pathways, by using a transgenic mouse line that carries a total deletion of the P2X4 receptor. Results: We demonstrated that P2X4 deletion prevents hyperactivity in the mouse model of ADHD. In contrast, the absence of P2X4 lowered thermal pain thresholds in sham conditions and did not affect pain sensitization in ADHD-like conditions. We further analysed microglia reactivity and the expression of inflammatory markers in wild type and P2X4KO mice. Our results revealed that P2X4 deletion limits microglia reactivity but at the same time exerts proinflammatory effects in the anterior cingulate cortex and posterior insula. Conclusion: This dual role of P2X4 could be responsible for the differential effects noted on ADHD-like symptoms and pain sensitization and calls for further studies to investigate the therapeutic benefit of targeting the P2X4 receptor in ADHD patients.

5.
Brain Struct Funct ; 226(1): 163-178, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33245394

RESUMO

Brain insulin resistance is a major factor leading to impaired cognitive function and it is considered as the onset of Alzheimer´s disease. Insulin resistance is intimately linked to inflammatory conditions, many studies have revealed how pro-inflammatory cytokines lead to insulin resistance, by inhibiting IRS1 function. Thus, the dysfunction of insulin signaling is concomitant with inflammatory biomarkers. However, the specific effect of IRS1 impaired function in otherwise healthy brain has not been dissected out. So, we decided in our study, to study the specific role of IRS1 in the hippocampus, in the absence of comorbidities. To that end, shRNA against rat and human IRS1 was designed and tested in cultured HEK cells to evaluate mRNA levels and specificity. The best candidate sequence was encapsulated in an AAV vector (strain DJ8) under the control of the cytomegalovirus promoter and together with the green fluorescent protein gene as a reporter. AAV-CMV-shIRS1-EGFP and control AAV-CMV-EGFP were inoculated into the dorsal hippocampus of female and male Wistar rats. One month later, animals undertook a battery of behavioral paradigms evaluating spatial and social memory and anxiety. Our results suggest that females displayed increased susceptibility to AAV-shIRS1 in the novel recognition object paradigm; whereas both females and males show impaired performance in the T maze when infected with AAV-shIRS1 compared to control. Anxiety parameters were not affected by AAV-shIRS1 infection. We observed specific fluorescence within the hilum of the dentate gyrus, in immuno-characterized parvalbumin and somatostatin neurons. AAV DJ8 did not enter astrocytes. Intense green fibers were found in the fornix, mammillary bodies, and in the medial septum indicating that hippocampal efferent had been efficiently targeted by the AAV DJ8 infection. We observed that AAV-shIRS1 reduced significantly synaptophysin labeling in hippocampal-septal projections compared to controls. These results support that, small alterations in the insulin/IGF1 pathway in specific hippocampal circuitries can underlie alterations in synaptic plasticity and affect behavior, in the absence of inflammatory conditions.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , RNA Interferente Pequeno/administração & dosagem , Memória Espacial/fisiologia , Adenoviridae , Animais , Feminino , Vetores Genéticos , Masculino , Aprendizagem em Labirinto/fisiologia , Parvalbuminas/metabolismo , Ratos , Ratos Wistar , Somatostatina/metabolismo , Sinaptofisina/metabolismo
6.
Mol Neurobiol ; 56(1): 454-464, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29721854

RESUMO

Accumulated evidence indicates that neuroinflammation induces insulin resistance in the brain. Moreover, both processes are intimately linked to neurodegenerative disorders, including Alzheimer's disease. Potential mechanisms underlying insulin resistance include serine phosphorylation of the insulin receptor substrate (IRS) or insulin receptor (IR) misallocation. However, only a few studies have focused on IRS expression in the brain and its modulation in neuroinflammatory processes. This study used the high-fat diet (HFD) model of neuroinflammation to study the alterations of IR, an insulin-like growth factor receptor (IGF1R) and IRS expressions in the hippocampus. We observed that HFD effectively reduced mRNA and protein IRS2 expression. In contrast, a HFD induced the upregulation of the IRS1 mRNA levels, but did not alter an IR and IGF1R expression. As expected, we observed that a HFD increased hippocampal tumor necrosis factor alpha (TNFα) and amyloid precursor protein (APP) levels while reducing brain-derived neurotrophic factor (BDNF) expression and neurogenesis. Interestingly, we found that TNFα correlated positively with IRS1 and negatively with IRS2, whereas APP levels correlated positively only with IRS1 but not IRS2. These results indicate that IRS1 and IRS2 hippocampal expression can be affected differently by HFD-induced neuroinflammation. In addition, we aimed to establish whether abscisic acid (ABA) can rescue hippocampal IRS1 and IRS2 expression, as we had previously shown that ABA supplementation prevents memory impairments and improves neuroinflammation induced by a HFD. In this study, ABA restored HFD-induced hippocampal alterations, including IRS1 and IRS2 expression, TNFα, APP, and BDNF levels and neurogenesis. In conclusion, this study highlights different regulations of hippocampal IRS1 and IRS2 expression using a HFD, indicating the important differences of these scaffolding proteins, and strongly supports ABA therapeutic effects.


Assuntos
Ácido Abscísico/farmacologia , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/patologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dieta Hiperlipídica , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Neurogênese/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Aumento de Peso
7.
Mol Neurobiol ; 56(5): 3833, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806955

RESUMO

The author missed to include the second affiliation of Mariam Atef to the original paper published. With this, the authors published this correction.

8.
Brain Struct Funct ; 224(1): 453-469, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30368554

RESUMO

In mammals, the extended amygdala is a neural hub for social and emotional information processing. In the rat, the extended amygdala receives inhibitory GABAergic projections from the nucleus incertus (NI) in the pontine tegmentum. NI neurons produce the neuropeptide relaxin-3, which acts via the Gi/o-protein-coupled receptor, RXFP3. A putative role for RXFP3 signalling in regulating social interaction was investigated by assessing the effect of intracerebroventricular infusion of the RXFP3 agonist, RXFP3-A2, on performance in the 3-chamber social interaction paradigm. Central RXFP3-A2, but not vehicle, infusion, disrupted the capacity to discriminate between a familiar and novel conspecific subject, but did not alter differentiation between a conspecific and an inanimate object. Subsequent studies revealed that agonist-infused rats displayed increased phosphoERK(pERK)-immunoreactivity in specific amygdaloid nuclei at 20 min post-infusion, with levels similar to control again after 90 min. In parallel, we used immunoblotting to profile ERK phosphorylation dynamics in whole amygdala after RXFP3-A2 treatment; and multiplex histochemical labelling techniques to reveal that after RXFP3-A2 infusion and social interaction, pERK-immunopositive neurons in amygdala expressed vesicular GABA-transporter mRNA and displayed differential profiles of RXFP3 and oxytocin receptor mRNA. Overall, these findings demonstrate that central relaxin-3/RXFP3 signalling can modulate social recognition in rats via effects within the amygdala and likely interactions with GABA and oxytocin signalling.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Peptídeos/administração & dosagem , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Ácido gama-Aminobutírico/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/enzimologia , Animais , Neurônios GABAérgicos/enzimologia , Infusões Intraventriculares , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Ocitocina/metabolismo , Fosforilação , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
9.
Brain Struct Funct ; 222(1): 449-463, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27146679

RESUMO

The medial septum/diagonal band (MS/DB) is a relay region connecting the hypothalamus and brainstem with the hippocampus, and both the MS/DB and dorsal/ventral hippocampus receive strong topographic GABA/peptidergic projections from the nucleus incertus of the pontine tegmentum. The neuropeptide relaxin-3, released by these neurons, is the cognate ligand for a Gi/o-protein-coupled receptor, RXFP3, which is highly expressed within the MS/DB, and both cholinergic and GABAergic neurons in this region of rat brain receive relaxin-3 positive terminals/boutons. Comprehensive in vitro studies have demonstrated that the cell signaling pathways altered by RXFP3 stimulation, include inhibition of forskolin-activated cAMP levels and activation of ERK phosphorylation. In this study we investigated whether intracerebroventricular (icv) injection of RXFP3-A2, a selective relaxin-3 receptor agonist, altered ERK phosphorylation levels in the MS/DB of adult male rats. We subsequently assessed the neurochemical phenotype of phosphorylated (p) ERK-positive neurons in MS/DB after icv RXFP3-A2 administration by dual-label immunostaining for pERK and neuronal markers for cholinergic and GABAergic neurons. Central RXFP3-A2 injection significantly increased levels of pERK immunoreactivity (IR) in MS/DB at 20 and 90 min post-injection, compared to vehicle and naive levels. In addition, RXFP3-A2 increased the number of cells expressing pERK-IR in the MS/DB at 90 (but not 20) min post-injection in cholinergic (but not GABAergic) neurons, which also expressed putative RXFP3-IR. Moreover, icv injection of RXFP3-A2 impaired alternation in a delayed spontaneous T-maze test of spatial working memory. The presence of RXFP3-like IR and the RXFP3-related activation of the MAPK/ERK pathway in MS/DB cholinergic neurons identifies them as a key target of ascending relaxin-3 projections with implications for the acute and chronic modulation of cholinergic neuron activity and function by relaxin-3/RXFP3 signaling.


Assuntos
Neurônios Colinérgicos/metabolismo , Sistema de Sinalização das MAP Quinases , Memória de Curto Prazo/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Núcleos Septais/fisiologia , Memória Espacial/fisiologia , Animais , Neurônios GABAérgicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Peptídeos/administração & dosagem , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Núcleos Septais/metabolismo
10.
Nutr Metab (Lond) ; 13: 73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27795733

RESUMO

BACKGROUND: Western diet and lifestyle are associated with overweight, obesity, and type 2 diabetes, which, in turn, are correlated with neuroinflammation processes. Exercise and a healthy diet are important in the prevention of these disorders. However, molecules inhibiting neuroinflammation might also be efficacious in the prevention and/or treatment of neurological disorders of inflammatory etiology. The abscisic acid (ABA) is a phytohormone involved in hydric-stress responses. This compound is not only found in plants but also in other organisms, including mammals. In rodents, ABA can play a beneficial role in the regulation of peripheral immune response and insulin action. Thus, we hypothesized that chronic ABA administration might exert a protective effect in a model of neuroinflammation induced by high-fat diet (HFD). METHODS: Male Wistar rats were fed with standard diet or HFD with or without ABA in the drinking water for 12 weeks. Glucose tolerance test and behavioral paradigms were performed to evaluate the peripheral and central effects of treatments. One-Way ANOVA was performed analyzed statistical differences between groups. RESULTS: The HFD induced insulin resistance peripherally and increased the levels of proinflammatory markers in in the brain. We observed that ABA restored glucose tolerance in HFD-fed rats, as expected. In addition, chronic ABA treatment rescued cognitive performance in these animals, while not affecting control diet fed animals. Moreover, it counteracted the changes induced by HFD in the hypothalamus; microglia activations and TNFα mRNA levels. CONCLUSION: These results suggest that ABA might become a new therapeutic molecule improving the neuroinflammatory status and insulin resistance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa