Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 12(4): e1005968, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27058886

RESUMO

The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species.


Assuntos
Padronização Corporal , Proteínas de Homeodomínio/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Alelos , Animais , Proteínas de Homeodomínio/genética , Proteínas de Peixe-Zebra/genética
2.
J Neurosci ; 33(5): 1804-14, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365220

RESUMO

Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry, and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second-order neurons, bipolar cells, and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6c(w59) larval retina but not rod degeneration in the Xops:mCFP(q13) line. In adults, rods and cones are present in approximately equal numbers, and in pde6c(w59) mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2b(p25bbtl) or six7 morpholino-injected larvae protect from pde6c(w59)-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes, provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease.


Assuntos
Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Sinapses/fisiologia , Animais , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/patologia , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Horizontais da Retina/metabolismo , Células Horizontais da Retina/patologia , Células Horizontais da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sinapses/metabolismo , Sinapses/patologia , Peixe-Zebra
3.
Invest Ophthalmol Vis Sci ; 56(12): 7496-515, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26580854

RESUMO

PURPOSE: Photoreceptor genesis in the retina requires precise regulation of progenitor cell competence, cell cycle exit, and differentiation, although information around the mechanisms that govern these events currently is lacking. In zebrafish, the basic helix-loop-helix (bHLH) transcription factor NeuroD governs photoreceptor genesis, but the signaling pathways through which NeuroD functions are unknown. The purpose of this study was to identify these pathways, and during photoreceptor genesis, Notch signaling was investigated as the putative mediator of NeuroD function. METHODS: In embryos, genetic mosaic analysis was used to determine if NeuroD functions is cell- or non-cell-autonomous. Morpholino-induced NeuroD knockdown, CRISPR/Cas9 mutation, and pharmacologic and transgenic approaches were used, followed by in situ hybridization, immunocytochemistry, and quantitative RT-PCR (qRT-PCR), to identify mechanisms through which NeuroD functions. In adults, following photoreceptor ablation and NeuroD knockdown, similar methods as above were used to identify NeuroD function during photoreceptor regeneration. RESULTS: In embryos, NeuroD function is non-cell-autonomous, NeuroD knockdown increases Notch pathway gene expression, Notch inhibition rescues the NeuroD knockdown-induced deficiency in cell cycle exit but not photoreceptor maturation, and Notch activation and CRISPR/Cas9 mutation of neurod recapitulate NeuroD knockdown. In adults, NeuroD knockdown prevents cell cycle exit and photoreceptor regeneration and increases Notch pathway gene expression, and Notch inhibition rescues this phenotype. CONCLUSIONS: These data demonstrate that during embryonic development, NeuroD governs photoreceptor genesis via non-cell-autonomous mechanisms and that, during photoreceptor development and regeneration, Notch signaling is a mechanistic link between NeuroD and cell cycle exit. In contrast, during embryonic development, NeuroD governs photoreceptor maturation via mechanisms that are independent of Notch signaling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Células Fotorreceptoras/metabolismo , RNA/genética , Receptores Notch/metabolismo , Regeneração , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular , Células Cultivadas , Sequências Hélice-Alça-Hélice , Proteínas do Tecido Nervoso/biossíntese , Células Fotorreceptoras/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa