Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Peripher Nerv Syst ; 28(1): 4-16, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36335586

RESUMO

Axon degeneration accounts for the poor clinical outcome in Guillain-Barré syndrome (GBS), yet no treatments target this key pathogenic stage. Animal models demonstrate anti-ganglioside antibodies (AGAb) induce axolemmal complement pore formation through which calcium flux activates the intra-axonal calcium-dependent proteases, calpains. We previously showed protection of axonal components using soluble calpain inhibitors in ex vivo GBS mouse models, and herein, we assess the potential of axonally-restricted calpain inhibition as a neuroprotective therapy operating in vivo. Using transgenic mice that over-express the endogenous human calpain inhibitor calpastatin (hCAST) neuronally, we assessed distal motor nerve integrity in our established GBS models. We induced immune-mediated injury with monoclonal AGAb plus a source of human complement. The calpain substrates neurofilament and AnkyrinG, nerve structural proteins, were assessed by immunolabelling and in the case of neurofilament, by single-molecule arrays (Simoa). As the distal intramuscular portion of the phrenic nerve is prominently targeted in our in vivo model, respiratory function was assessed by whole-body plethysmography as the functional output in the acute and extended models. hCAST expression protects distal nerve structural integrity both ex and in vivo, as shown by attenuation of neurofilament breakdown by immunolabelling and Simoa. In an extended in vivo model, while mice still initially undergo respiratory distress owing to acute conduction failure, the recovery phase was accelerated by hCAST expression. Axonal calpain inhibition can protect the axonal integrity of the nerve in an in vivo GBS paradigm and hasten recovery. These studies reinforce the strong justification for developing further animal and human clinical studies using exogenous calpain inhibitors.


Assuntos
Síndrome de Guillain-Barré , Camundongos , Humanos , Animais , Calpaína/metabolismo , Cálcio/metabolismo , Axônios/patologia , Camundongos Transgênicos
2.
Addict Biol ; 27(5): e13217, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36001434

RESUMO

The purpose of this study was to determine if social vs nonsocial cues (peer vs light/tone) can serve as discriminative stimuli to reinstate cocaine seeking. In addition, to assess a potential mechanism, an oxytocin (OT) promoter-linked hM3Dq DREADD was infused into the paraventricular nucleus of the hypothalamus to determine whether peer-induced cocaine seeking is decreased by activation of OT neurons. Male rats underwent twice-daily self-administration sessions, once with cocaine in the presence of one peer (S+) and once with saline in the presence of a different peer (S-). Another experiment used similar procedures, except the discriminative stimuli were nonsocial (constant vs flashing light/tone), with one stimulus paired with cocaine (S+) and the other paired with saline (S-). A third experiment injected male and female rats with OTp-hM3Dq DREADD or control virus into PVN and tested them for peer-induced reinstatement of cocaine seeking following clozapine (0.1 mg/kg). Although acquisition of cocaine self-administration was similar in rats trained with either peer or light/tone discriminative stimuli, the latency to first response was reduced by the peer S+, but not by the light/tone S+. In addition, the effect of the conditioned stimulus was overshadowed by the peer S+ but not by the light/tone S+. Clozapine blocked the effect of the peer S+ in rats receiving the OTp-hM3Dq DREADD virus, but not in rats receiving the control virus. These results demonstrate that a social peer can serve as potent trigger for drug seeking and that OT in PVN modulates peer-induced reinstatement of cocaine seeking.


Assuntos
Clozapina , Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Clozapina/farmacologia , Cocaína/farmacologia , Sinais (Psicologia) , Extinção Psicológica , Feminino , Masculino , Neurônios , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular , Ratos , Autoadministração
3.
Neuroimage ; 198: 160-169, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31112789

RESUMO

Continuous and longitudinal imaging of cerebral blood flow (CBF) variations provide vital information to investigate pathophysiology and interventions for a variety of neurological and cerebral diseases. An innovative noncontact speckle contrast diffuse correlation tomography (scDCT) system was downscaled and adapted for noninvasive imaging of CBF distributions in rat brain through intact scalp and skull. Algorithms for 2D mapping and 3D image reconstruction of CBF distributions were developed and optimized. The continuous imaging capability of the system was shown by imaging global CBF increases during CO2 inhalations and regional CBF decreases across two hemispheres during sequential unilateral and bilateral common carotid artery ligations. The longitudinal imaging capability was demonstrated by imaging CBF variations over a long recovery period of 14 days after an acute stroke. Compared to the 2D mapping method, the 3D imaging method reduces partial volume effects, but needs more computation time for image reconstruction. Results from this study generally agree with those reported in the literature using similar protocols to induce CBF changes in rats. The scDCT enables a relatively large penetration depth (up to ∼10 mm), which is sufficient for transcranial brain measurements in small animals and human neonates. Ultimately, we expect to provide a noninvasive noncontact cerebral imager for basic neuroscience research in small animal models and clinical applications in human neonates.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Imagem Óptica/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia/métodos , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular , Imageamento Tridimensional/métodos , Masculino , Imagem Óptica/instrumentação , Ratos Sprague-Dawley , Acidente Vascular Cerebral/fisiopatologia , Tomografia/instrumentação
4.
Ann Neurol ; 82(2): 208-222, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28696548

RESUMO

OBJECTIVE: The brain blood vessels of patients with type 2 diabetes and dementia have deposition of amylin, an amyloidogenic hormone cosecreted with insulin. It is not known whether vascular amylin deposition is a consequence or a trigger of vascular injury. We tested the hypothesis that the vascular amylin deposits cause endothelial dysfunction and microvascular injury and are modulated by amylin transport in the brain via plasma apolipoproteins. METHODS: Rats overexpressing amyloidogenic (human) amylin in the pancreas (HIP rats) and amylin knockout (AKO) rats intravenously infused with aggregated amylin were used for in vivo phenotyping. We also carried out biochemical analyses of human brain tissues and studied the effects of the aggregated amylin on endothelial cells ex vivo. RESULTS: Amylin deposition in brain blood vessels is associated with vessel wall disruption and abnormal surrounding neuropil in patients with type 2 diabetes and dementia, in HIP rats, and in AKO rats infused with aggregated amylin. HIP rats have brain microhemorrhages, white matter injury, and neurologic deficits. Vascular amylin deposition provokes loss of endothelial cell coverage and tight junctions. Intravenous infusion in AKO rats of human amylin, or combined human amylin and apolipoprotein E4, showed that amylin binds to plasma apolipoproteins. The intravenous infusion of apolipoprotein E4 exacerbated the brain accumulation of aggregated amylin and vascular pathology in HIP rats. INTERPRETATION: These data identify vascular amylin deposition as a trigger of brain endothelial dysfunction that is modulated by plasma apolipoproteins and represents a potential therapeutic target in diabetes-associated dementia and stroke. Ann Neurol 2017;82:208-222.


Assuntos
Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/efeitos adversos , Leucoencefalopatias/induzido quimicamente , Leucoencefalopatias/patologia , Microvasos/metabolismo , Idoso de 80 Anos ou mais , Animais , Apolipoproteína E4/administração & dosagem , Apolipoproteína E4/efeitos adversos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Sinergismo Farmacológico , Endotélio/metabolismo , Técnicas de Inativação de Genes , Humanos , Hemorragias Intracranianas/induzido quimicamente , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Leucoencefalopatias/sangue , Leucoencefalopatias/complicações , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Neuroimagem , Pâncreas/metabolismo , Ratos , Ratos Mutantes , Junções Íntimas/efeitos dos fármacos
5.
Metab Brain Dis ; 30(2): 411-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24771110

RESUMO

Traumatic brain injury (TBI) is accompanied with enhanced matrix metalloproteinase-9 (MMP-9) activity and elevated levels of plasma fibrinogen (Fg), which is a known inflammatory agent. Activation of MMP-9 and increase in blood content of Fg (i.e. hyperfibrinogenemia, HFg) both contribute to cerebrovascular disorders leading to blood brain barrier disruption. It is well-known that activation of MMP-9 contributes to vascular permeability. It has been shown that at an elevated level (i.e. HFg) Fg disrupts blood brain barrier. However, mechanisms of their actions during TBI are not known. Mild TBI was induced in wild type (WT, C57BL/6 J) and MMP-9 gene knockout (Mmp9(-/-)) homozygous, mice. Pial venular permeability to fluorescein isothiocyanate-conjugated bovine serum albumin in pericontusional area was observed 14 days after injury. Mice memory was tested with a novel object recognition test. Increased expression of Fg endothelial receptor intercellular adhesion protein-1 and formation of caveolae were associated with enhanced activity of MMP-9 causing an increase in pial venular permeability. As a result, an enhanced deposition of Fg and cellular prion protein (PrP(C)) were found in pericontusional area. These changes were attenuated in Mmp9(-/-) mice and were associated with lesser loss of short-term memory in these mice than in WT mice. Our data suggest that mild TBI-induced increased cerebrovascular permeability enhances deposition of Fg-PrP(C) and loss of memory, which is ameliorated in the absence of MMP-9 activity. Thus, targeting MMP-9 activity and blood level of Fg can be a possible therapeutic remedy to diminish vasculo-neuronal damage after TBI.


Assuntos
Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Circulação Cerebrovascular/genética , Fibrinogênio/metabolismo , Metaloproteinase 9 da Matriz/genética , Animais , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/psicologia , Capilares/patologia , Córtex Cerebral/lesões , Veias Cerebrais/metabolismo , Contusões/genética , Contusões/metabolismo , Contusões/psicologia , Molécula 1 de Adesão Intercelular/biossíntese , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Proteínas PrPC/metabolismo
6.
Sci Rep ; 14(1): 2990, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316862

RESUMO

Traumatic brain injury (TBI) increases gastrointestinal morbidity and associated mortality. Clinical and preclinical studies implicate gut dysbiosis as a consequence of TBI and an amplifier of brain damage. However, little is known about the association of gut dysbiosis with structural and functional changes of the gastrointestinal tract after an isolated TBI. To assess gastrointestinal dysfunction, mice received a controlled cortical impact or sham brain injury and intestinal permeability was assessed at 4 h, 8 h, 1 d, and 3 d after injury by oral administration of 4 kDa FITC Dextran prior to euthanasia. Quantification of serum fluorescence revealed an acute, short-lived increase in permeability 4 h after TBI. Despite transient intestinal dysfunction, no overt morphological changes were evident in the ileum or colon across timepoints from 4 h to 4 wks post-injury. To elucidate the timeline of microbiome changes after TBI, 16 s gene sequencing was performed on DNA extracted from fecal samples collected prior to and over the first month after TBI. Differential abundance analysis revealed that the phylum Verrucomicrobiota was increased at 1, 2, and 3 d after TBI. The Verrucomicrobiota species was identified by qPCR as Akkermansia muciniphila, an obligate anaerobe that resides in the intestinal mucus bilayer and produces short chain fatty acids (e.g. butyrate) utilized by intestinal epithelial cells. We postulated that TBI promotes intestinal changes favorable for the bloom of A. muciniphila. Consistent with this premise, the relative area of mucus-producing goblet cells in the medial colon was significantly increased at 1 d after injury, while colon hypoxia was significantly increased at 3 d. Our findings reveal acute gastrointestinal functional changes coupled with an increase of beneficial bacteria suggesting a potential compensatory response to systemic stress after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Gastroenteropatias , Camundongos , Animais , Disbiose/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas/complicações , Verrucomicrobia , Íleo , Gastroenteropatias/complicações , Permeabilidade , Akkermansia
7.
J Neurosci ; 32(29): 9887-97, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815504

RESUMO

The molecular mechanisms governing the spontaneous recovery seen following brain injury remain elusive, but recent studies indicate that injury-induced stimulation of hippocampal neurogenesis contributes to the repair process. The therapeutic potential of endogenous neurogenesis is tempered by the demonstration that traumatic brain injury (TBI) results in the selective death of adult-born immature neurons, compromising the cell population poised to compensate for trauma-induced neuronal loss. Here, we identify the Ras-related GTPase, Rit, as a critical player in the survival of immature hippocampal neurons following brain injury. While Rit knock-out (Rit(-/-)) did not alter hippocampal development, hippocampal neural cultures derived from Rit(-/-) mice display increased cell death and blunted MAPK cascade activation in response to oxidative stress, without affecting BDNF-dependent signaling. When compared with wild-type hippocampal cultures, Rit loss rendered immature (Dcx(+)) neurons susceptible to oxidative damage, without altering the survival of neural progenitor (Nestin(+)) cells. Oxidative stress is a major contributor to neuronal cell death following brain injury. Consistent with the enhanced vulnerability of cultured Rit(-/-) immature neurons, Rit(-/-) mice exhibited a significantly greater loss of adult-born immature neurons within the dentate gyrus after TBI. In addition, post-TBI neuronal remodeling was blunted. Together, these data identify a new and unexpected role for Rit in injury-induced neurogenesis, functioning as a selective survival mechanism for immature hippocampal neurons within the subgranular zone of the dentate gyrus following TBI.


Assuntos
Sobrevivência Celular/fisiologia , Hipocampo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Animais , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Dendritos/metabolismo , Proteína Duplacortina , Hipocampo/citologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Estresse Oxidativo/fisiologia , Proteínas ras/genética
8.
J Neurochem ; 125(6): 909-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23305291

RESUMO

The calpain family of calcium-dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene-knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin-overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α-spectrin, collapsin response mediator protein-2, and voltage-gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain-mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in traumatic brain injury and neurodegenerative disorders.


Assuntos
Lesões Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Animais , Lesões Encefálicas/patologia , Proteínas de Ligação ao Cálcio/genética , Feminino , Efeito Fundador , Hipocampo/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Príons/genética , Regiões Promotoras Genéticas , Proteólise , Espectrina/metabolismo
9.
Neurobiol Dis ; 56: 34-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23542511

RESUMO

In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca(2+)-dependent protease calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 h after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 h post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration.


Assuntos
Axônios/patologia , Calpaína/fisiologia , Citoesqueleto/patologia , Degeneração Walleriana/patologia , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Córtex Cerebral/patologia , Eletromiografia , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Proteínas de Neurofilamentos/metabolismo , Junção Neuromuscular/patologia , Nervo Óptico/patologia , Retina/patologia , Nervo Isquiático/patologia
10.
Viruses ; 16(1)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38257755

RESUMO

Platelets express several surface receptors that could interact with different viruses. To understand the mechanisms of HIV-1's interaction with platelets, we chose the EcoHIV model. While EcoHIV is an established model for neuroAIDS, its effects on platelets are ill-defined. Our results indicate that EcoHIV behaves differently from HIV-1 and is cleared from circulation after 48 h post-infection. The EcoHIV course of infection resembles an HIV-1 infection under the effects of combined antiretroviral therapy (cART) since infected mice stayed immunocompetent and the virus was readily detected in the spleen. EcoHIV-infected mice failed to become thrombocytopenic and showed no signs of platelet activation. One explanation is that mouse platelets lack the EcoHIV receptor, murine Cationic Amino acid Transporter-1 (mCAT-1). No mCAT-1 was detected on their surface, nor was any mCAT-1 mRNA detected. Thus, mouse platelets would not bind or become activated by EcoHIV. However, impure virus preparations, generated by Polyethylene Glycol (PEG) precipitation, do activate platelets, suggesting that nonspecific PEG-precipitates may contain other platelet activators (e.g., histones and cell debris). Our data do not support the concept that platelets, through general surface proteins such as DC-SIGN or CLEC-2, have a wide recognition for different viruses and suggest that direct platelet/pathogen interactions are receptor/ligand specific.


Assuntos
Soropositividade para HIV , HIV-1 , Animais , Camundongos , Ativação Plaquetária , Plaquetas , Terapia Antirretroviral de Alta Atividade
11.
Neurophotonics ; 10(4): 045007, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076725

RESUMO

Significance: Frequent assessment of cerebral blood flow (CBF) is crucial for the diagnosis and management of cerebral vascular diseases. In contrast to large and expensive imaging modalities, such as nuclear medicine and magnetic resonance imaging, optical imaging techniques are portable and inexpensive tools for continuous measurements of cerebral hemodynamics. The recent development of an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) enables three-dimensional (3D) imaging of CBF distributions. However, scDCT requires complex and time-consuming 3D reconstruction, which limits its ability to achieve high spatial resolution without sacrificing temporal resolution and computational efficiency. Aim: We investigate a new diffuse speckle contrast topography (DSCT) method with parallel computation for analyzing scDCT data to achieve fast and high-density two-dimensional (2D) mapping of CBF distributions at different depths without the need for 3D reconstruction. Approach: A new moving window method was adapted to improve the sampling rate of DSCT. A fast computation method utilizing MATLAB functions in the Image Processing Toolbox™ and Parallel Computing Toolbox™ was developed to rapidly generate high-density CBF maps. The new DSCT method was tested for spatial resolution and depth sensitivity in head-simulating layered phantoms and in-vivo rodent models. Results: DSCT enables 2D mapping of the particle flow in the phantom at different depths through the top layer with varied thicknesses. Both DSCT and scDCT enable the detection of global and regional CBF changes in deep brains of adult rats. However, DSCT achieves fast and high-density 2D mapping of CBF distributions at different depths without the need for complex and time-consuming 3D reconstruction. Conclusions: The depth-sensitive DSCT method has the potential to be used as a noninvasive, noncontact, fast, high resolution, portable, and inexpensive brain imager for basic neuroscience research in small animal models and for translational studies in human neonates.

12.
Vitam Horm ; 118: 423-455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180936

RESUMO

Traumatic brain injury (TBI) initiates a constellation of secondary injury cascades, leading to neuronal damage and dysfunction that is often beyond the scope of endogenous repair mechanisms. Cognitive deficits are among the most persistent morbidities resulting from TBI, necessitating a greater understanding of mechanisms of posttraumatic hippocampal damage and neuroplasticity and identification of therapies that improve recovery by enhancing repair pathways. Focusing here on hippocampal neuropathology associated with contusion-type TBIs, the impact of brain trauma on synaptic structure and function and the process of adult neurogenesis is discussed, reviewing initial patterns of damage as well as evidence for spontaneous recovery. A case is made that insulin-like growth factor-1 (IGF-1), a growth-promoting peptide synthesized in both the brain and the periphery, is well suited to augment neuroplasticity in the injured brain. Essential during brain development, multiple lines of evidence delineate roles in the adult brain for IGF-1 in the maintenance of synapses, regulation of neurotransmission, and modulation of forms of synaptic plasticity such as long-term potentiation. Further, IGF-1 enhances adult hippocampal neurogenesis though effects on proliferation and neuronal differentiation of neural progenitor cells and on dendritic growth of newly born neurons. Post-injury administration of IGF-1 has been effective in rodent models of TBI in improving learning and memory, attenuating death of mature hippocampal neurons and promoting neurogenesis, providing critical proof-of-concept data. More studies are needed to explore the effects of IGF-1-based therapies on synaptogenesis and synaptic plasticity following TBI and to optimize strategies in order to stimulate only appropriate, functional neuroplasticity.


Assuntos
Lesões Encefálicas Traumáticas , Fator de Crescimento Insulin-Like I , Animais , Hipocampo/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Neurogênese , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo
13.
Res Pract Thromb Haemost ; 6(4): e12734, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35702585

RESUMO

Background: Traumatic brain injury (TBI) results in neurovascular damage that initiates intrinsic mechanisms of hypercoagulation, which can contribute to the development of life-threatening complications, such as coagulopathy and delayed thrombosis. Clinical studies have hypothesized that tissue factor (TF) induces hypercoagulability after TBI; however, none have directly shown this relationship. Objectives: In the current study, we took a stepwise approach to understand what factors are driving thrombin generation following experimental TBI. Methods: We employed the contusion-producing controlled cortical impact (CCI) model and the diffuse closed head injury (CHI) model to investigate these mechanisms as a function of injury severity and modality. Whole blood was collected at 6 hours and 24 hours after injury, and platelet-poor plasma was used to measure thrombin generation and extracellular vesicle (EV) TF. Results: We found that plasma thrombin generation, dependent on TF present in the plasma, was greater in CCI-injured animals compared to sham at both 6 hours (120.4 ± 36.9 vs 0.0 ± 0.0 nM*min endogenous thrombin potential) and 24 hours (131.0 ± 34.0 vs 32.1 ± 20.6 nM*min) after injury. This was accompanied by a significant increase in EV TF at 24 hours (328.6 ± 62.1 vs 167.7 ± 20.8 fM) after CCI. Further, EV TF is also increased at 6 hours (126.6 ± 17.1 vs 63.3 ± 14.4 fM) but not 24 hours following CHI. Conclusion: TF-mediated thrombin generation is time-dependent after injury and TF increases resolve earlier following CHI as compared to CCI. Taken together, these data support a TF-mediated pathway of thrombin generation after TBI and pinpoint TF as a major player in TBI-induced coagulopathy.

14.
Am J Pathol ; 177(1): 334-45, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20489155

RESUMO

Granulin (GRN, or progranulin) is a protein involved in wound repair, inflammation, and neoplasia. GRN has also been directly implicated in frontotemporal dementia and may contribute to Alzheimer's disease pathogenesis. However, GRN regulation expression is poorly understood. A high-throughput experimental microRNA assay showed that GRN is the strongest target for miR-107 in human H4 neuroglioma cells. miR-107 has been implicated in Alzheimer's disease pathogenesis, and sequence elements in the open reading frame-rather than the 3' untranslated region-of GRN mRNA are recognized by miR-107 and are highly conserved among vertebrate species. To better understand the mechanism of this interaction, FLAG-tagged Argonaute constructs were used following miR-107 transfection. GRN mRNA interacts preferentially with Argonaute 2. In vitro and in vivo studies indicate that regulation of GRN by miR-107 may be functionally important. Glucose supplementation in cultured cells that leads to increased miR-107 levels also results in decreased GRN expression, including changes in cell compartmentation and decreased secretion of GRN protein. This effect was eliminated following miR-107 transfection. We also tested a mouse model where miR-107 has been shown to be down-regulated. In brain tissue subjacent to 1.0 mm depth controlled cortical impact, surviving hippocampal neurons show decreased miR-107 with augmentation of neuronal GRN expression. These findings indicate that miR-107 contributes to GRN expression regulation with implications for brain disorders.


Assuntos
Lesões Encefálicas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Proteínas Argonautas , Sequência de Bases , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Células Cultivadas , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Glucose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Análise em Microsséries , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Progranulinas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
15.
J Biophotonics ; 14(4): e202000366, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33295142

RESUMO

We adapted and tested an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) system for 3D imaging of cerebral blood flow (CBF) variations in perinatal disease models utilizing neonatal piglets, which closely resemble human neonates. CBF variations were concurrently measured by the scDCT and an established diffuse correlation spectroscopy (DCS) during global ischemia, intraventricular hemorrhage, and asphyxia; significant correlations were observed. Moreover, CBF variations associated reasonably with vital pathophysiological changes. In contrast to DCS measurements of mixed signals from local scalp, skull and brain, scDCT generates 3D images of CBF distributions at prescribed depths within the head, thus enabling specific determination of regional cerebral ischemia. With further optimization and validation in animals and human neonates, scDCT has the potential to be a noninvasive imaging tool for both basic neuroscience research in laboratories and clinical applications in neonatal intensive care units.


Assuntos
Isquemia Encefálica , Circulação Cerebrovascular , Animais , Encéfalo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Suínos , Tomografia Computadorizada por Raios X
16.
Front Cell Dev Biol ; 9: 663456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095131

RESUMO

Adult hippocampal neurogenesis is stimulated acutely following traumatic brain injury (TBI). However, many hippocampal neurons born after injury develop abnormally and the number that survive long-term is debated. In experimental TBI, insulin-like growth factor-1 (IGF1) promotes hippocampal neuronal differentiation, improves immature neuron dendritic arbor morphology, increases long-term survival of neurons born after TBI, and improves cognitive function. One potential downstream mediator of the neurogenic effects of IGF1 is mammalian target of rapamycin (mTOR), which regulates proliferation as well as axonal and dendritic growth in the CNS. Excessive mTOR activation is posited to contribute to aberrant plasticity related to posttraumatic epilepsy, spurring preclinical studies of mTOR inhibitors as therapeutics for TBI. The degree to which pro-neurogenic effects of IGF1 depend upon upregulation of mTOR activity is currently unknown. Using immunostaining for phosphorylated ribosomal protein S6, a commonly used surrogate for mTOR activation, we show that controlled cortical impact TBI triggers mTOR activation in the dentate gyrus in a time-, region-, and injury severity-dependent manner. Posttraumatic mTOR activation in the granule cell layer (GCL) and dentate hilus was amplified in mice with conditional overexpression of IGF1. In contrast, delayed astrocytic activation of mTOR signaling within the dentate gyrus molecular layer, closely associated with proliferation, was not affected by IGF1 overexpression. To determine whether mTOR activation is necessary for IGF1-mediated stimulation of posttraumatic hippocampal neurogenesis, wildtype and IGF1 transgenic mice received the mTOR inhibitor rapamycin daily beginning at 3 days after TBI, following pulse labeling with bromodeoxyuridine. Compared to wildtype mice, IGF1 overexpressing mice exhibited increased posttraumatic neurogenesis, with a higher density of posttrauma-born GCL neurons at 10 days after injury. Inhibition of mTOR did not abrogate IGF1-stimulated enhancement of posttraumatic neurogenesis. Rather, rapamycin treatment in IGF1 transgenic mice, but not in WT mice, increased numbers of cells labeled with BrdU at 3 days after injury that survived to 10 days, and enhanced the proportion of posttrauma-born cells that differentiated into neurons. Because beneficial effects of IGF1 on hippocampal neurogenesis were maintained or even enhanced with delayed inhibition of mTOR, combination therapy approaches may hold promise for TBI.

17.
Cells ; 10(3)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652745

RESUMO

Traumatic brain injury (TBI) affects over 3 million individuals every year in the U.S. There is growing appreciation that TBI can produce systemic modifications, which are in part propagated through blood-brain barrier (BBB) dysfunction and blood-brain cell interactions. As such, platelets and leukocytes contribute to mechanisms of thromboinflammation after TBI. While these mechanisms have been investigated in experimental models of contusion brain injury, less is known regarding acute alterations following mild closed head injury. To investigate the role of platelet dynamics and bioenergetics after TBI, we employed two distinct, well-established models of TBI in mice: the controlled cortical impact (CCI) model of contusion brain injury and the closed head injury (CHI) model of mild diffuse brain injury. Hematology parameters, platelet-neutrophil aggregation, and platelet respirometry were assessed acutely after injury. CCI resulted in an early drop in blood leukocyte counts, while CHI increased blood leukocyte counts early after injury. Platelet-neutrophil aggregation was altered acutely after CCI compared to sham. Furthermore, platelet bioenergetic coupling efficiency was transiently reduced at 6 h and increased at 24 h post-CCI. After CHI, oxidative phosphorylation in intact platelets was reduced at 6 h and increased at 24 h compared to sham. Taken together, these data demonstrate that brain trauma initiates alterations in platelet-leukocyte dynamics and platelet metabolism, which may be time- and injury-dependent, providing evidence that platelets carry a peripheral signature of brain injury. The unique trend of platelet bioenergetics after two distinct types of TBI suggests the potential for utilization in prognosis.


Assuntos
Lesões Encefálicas Traumáticas/sangue , Leucócitos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
18.
Acta Neuropathol Commun ; 8(1): 46, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276671

RESUMO

Cellular damage associated with traumatic brain injury (TBI) manifests in motor and cognitive dysfunction following injury. Experimental models of TBI reveal cell death in the granule cell layer (GCL) of the hippocampal dentate gyrus acutely after injury. Adult-born neurons residing in the neurogenic niche of the GCL, the subgranular zone, are particularly vulnerable. Injury-induced proliferation of neural progenitors in the subgranular zone supports recovery of the immature neuron population, but their development and localization may be altered, potentially affecting long-term survival. Here we show that increasing hippocampal levels of insulin-like growth factor-1 (IGF1) is sufficient to promote end-stage maturity of posttrauma-born neurons and improve cognition following TBI. Mice with conditional overexpression of astrocyte-specific IGF1 and wild-type mice received controlled cortical impact or sham injury and bromo-2'-deoxyuridine injections for 7d after injury to label proliferating cells. IGF1 overexpression increased the number of GCL neurons born acutely after trauma that survived 6 weeks to maturity (NeuN+BrdU+), and enhanced their outward migration into the GCL while significantly reducing the proportion localized ectopically to the hilus and molecular layer. IGF1 selectively affected neurons, without increasing the persistence of posttrauma-proliferated glia in the dentate gyrus. IGF1 overexpressing animals performed better during radial arm water maze reversal testing, a neurogenesis-dependent cognitive test. These findings demonstrate the ability of IGF1 to promote the long-term survival and appropriate localization of granule neurons born acutely after a TBI, and suggest these new neurons contribute to improved cognitive function.


Assuntos
Lesões Encefálicas Traumáticas/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Giro Denteado/metabolismo , Fator de Crescimento Insulin-Like I/genética , Aprendizagem em Labirinto , Neurogênese/genética , Neurônios/metabolismo , Animais , Comportamento Animal , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Giro Denteado/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais , Neurônios/patologia
19.
Neural Regen Res ; 15(3): 416-424, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31571650

RESUMO

Stroke is one of the leading causes of death and disability in adults worldwide, resulting in huge social and financial burdens. Extracts from herbs, especially those used in Chinese medicine, have emerged as new pharmaceuticals for stroke treatment. Here we review the evidence from preclinical studies investigating neuroprotective properties of Chinese medicinal compounds through their application in acute and subacute phases of ischemic stroke, and highlight potential mechanisms underlying their therapeutic effects. It is noteworthy that many herbal compounds have been shown to target multiple mechanisms and in combinations may exert synergistic effects on signaling pathways, thereby attenuating multiple aspects of ischemic pathology. We conclude the paper with a general discussion of the prospects for novel natural compound-based regimens against stroke.

20.
J Vis Exp ; (160)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32658201

RESUMO

Neural stem cell (NSC) therapy is an emerging innovative treatment for stroke, traumatic brain injury and neurodegenerative disorders. As compared to intracranial delivery, intra-arterial administration of NSCs is less invasive and produces a more diffuse distribution of NSCs within the brain parenchyma. Further, intra-arterial delivery allows the first-pass effect in the brain circulation, lessening the potential for trapping of cells in peripheral organs, such as liver and spleen, a complication associated with peripheral injections. Here, we detail the methodology, in both mice and rats, for delivery of NSCs through the common carotid artery (mouse) or external carotid artery (rat) to the ipsilateral hemisphere after an ischemic stroke. Using GFP-labeled NSCs, we illustrate the widespread distribution achieved throughout the rodent ipsilateral hemisphere at 1 d, 1 week and 4 weeks after postischemic delivery, with a higher density in or near the ischemic injury site. In addition to long-term survival, we show evidence of differentiation of GFP-labeled cells at 4 weeks. The intra-arterial delivery approach described here for NSCs can also be used for administration of therapeutic compounds, and thus has broad applicability to varied CNS injury and disease models across multiple species.


Assuntos
Isquemia Encefálica/cirurgia , Injeções Intra-Arteriais/métodos , Células-Tronco Neurais/metabolismo , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Células-Tronco Neurais/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa