Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 101: 214-230, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026421

RESUMO

Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.


Assuntos
Artrite Experimental , Neuralgia , Animais , Anticorpos , Colágeno , Gânglios Espinais , Humanos , Lisofosfolipídeos , Camundongos , Neuroglia , Células Receptoras Sensoriais
2.
Am J Pathol ; 188(8): 1779-1793, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30037420

RESUMO

Lysophosphatidic acid (LPA) levels increase in the cerebrospinal fluid and blood within 24 hours after traumatic brain injury (TBI), indicating it may be a biomarker for subsequent cellular pathology. However, no data exist that document this association after TBI. We, therefore, acquired matrix-assisted laser desorption ionization imaging mass spectrometry data of LPA, major LPA metabolites, and hemoglobin from adult rat brains at 1 and 3 hours after controlled cortical impact injury. Data were semiquantitatively assessed by signal intensity analysis normalized to naïve rat brains acquired concurrently. Gray and white matter pathology was assessed on adjacent sections using immunohistochemistry for cell death, axonal injury, and intracellular LPA, to determine the spatiotemporal patterning of LPA corresponding to pathology. The results revealed significant increases in LPA and LPA precursors at 1 hour after injury and robust enhancement in LPA diffusively throughout the brain at 3 hours after injury. Voxel-wise analysis of LPA by matrix-assisted laser desorption ionization and ß-amyloid precursor protein by immunohistochemistry in adjacent sections showed significant association, raising the possibility that LPA is linked to secondary axonal injury. Total LPA and metabolites were also present in remotely injured areas, including cerebellum and brain stem, and in particular thalamus, where intracellular LPA is associated with cell death. LPA may be a useful biomarker of cellular pathology after TBI.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lisofosfolipídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Allergy Clin Immunol ; 135(4): 1008-1018.e1, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25512083

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by mast cells (MCs) on cross-linking of their high-affinity receptors for IgE by antigen that can amplify MC responses by binding to its S1P receptors. An acute MC-dependent allergic reaction can lead to systemic shock, but the early events of its development in lung tissues have not been investigated, and S1P functions in the onset of allergic processes remain to be examined. OBJECTIVE: We used a highly specific neutralizing anti-S1P antibody (mAb) and the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist JTE-013 to study the signaling contributions of S1P and S1PR2 to MC- and IgE-dependent airway allergic responses in mice within minutes after antigen challenge. METHODS: Allergic reaction was triggered by a single intraperitoneal dose of antigen in sensitized mice pretreated intraperitoneally with anti-S1P, isotype control mAb, JTE-013, or vehicle before antigen challenge. RESULTS: Kinetics experiments revealed early pulmonary infiltration of mostly T cells around blood vessels of sensitized mice 20 minutes after antigen exposure. Pretreatment with anti-S1P mAb inhibited in vitro MC activation, as well as in vivo development of airway infiltration and MC activation, reducing serum levels of histamine, cytokines, and the chemokines monocyte chemoattractant protein 1/CCL2, macrophage inflammatory protein 1α/CCL3, and RANTES/CCL5. S1PR2 antagonism or deficiency or MC deficiency recapitulated these results. Both in vitro and in vivo experiments demonstrated MC S1PR2 dependency for chemokine release and the necessity for signal transducer and activator of transcription 3 activation. CONCLUSION: Activation of S1PR2 by S1P and downstream signal transducer and activator of transcription 3 signaling in MCs regulate early T-cell recruitment to antigen-challenged lungs through chemokine production.


Assuntos
Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Lisofosfolipídeos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transferência Adotiva , Animais , Antígenos/imunologia , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Lisofosfolipídeos/antagonistas & inibidores , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
4.
J Neuroinflammation ; 11: 37, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24576351

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a bioactive phospholipid with a potentially causative role in neurotrauma. Blocking LPA signaling with the LPA-directed monoclonal antibody B3/Lpathomab is neuroprotective in the mouse spinal cord following injury. FINDINGS: Here we investigated the use of this agent in treatment of secondary brain damage consequent to traumatic brain injury (TBI). LPA was elevated in cerebrospinal fluid (CSF) of patients with TBI compared to controls. LPA levels were also elevated in a mouse controlled cortical impact (CCI) model of TBI and B3 significantly reduced lesion volume by both histological and MRI assessments. Diminished tissue damage coincided with lower brain IL-6 levels and improvement in functional outcomes. CONCLUSIONS: This study presents a novel therapeutic approach for the treatment of TBI by blocking extracellular LPA signaling to minimize secondary brain damage and neurological dysfunction.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/imunologia , Imunoglobulina G/uso terapêutico , Fatores Imunológicos/uso terapêutico , Lisofosfolipídeos/imunologia , Adulto , Idoso de 80 Anos ou mais , Animais , Lesões Encefálicas/líquido cefalorraquidiano , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Escala de Coma de Glasgow , Humanos , Lisofosfolipídeos/líquido cefalorraquidiano , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Método Simples-Cego , Adulto Jovem
5.
Cancer Cell ; 9(3): 225-38, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16530706

RESUMO

S1P has been proposed to contribute to cancer progression by regulating tumor proliferation, invasion, and angiogenesis. We developed a biospecific monoclonal antibody to S1P to investigate its role in tumorigenesis. The anti-S1P mAb substantially reduced tumor progression and in some cases eliminated measurable tumors in murine xenograft and allograft models. Tumor growth inhibition was attributed to antiangiogenic and antitumorigenic effects of the antibody. The anti-S1P mAb blocked EC migration and resulting capillary formation, inhibited blood vessel formation induced by VEGF and bFGF, and arrested tumor-associated angiogenesis. The anti-S1P mAb also neutralized S1P-induced proliferation, release of proangiogenic cytokines, and the ability of S1P to protect tumor cells from apoptosis in several tumor cell lines, validating S1P as a target for therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Lisofosfolipídeos/imunologia , Invasividade Neoplásica/prevenção & controle , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Esfingosina/análogos & derivados , Animais , Especificidade de Anticorpos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Esfingosina/imunologia
6.
Am J Pathol ; 181(3): 978-92, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22819724

RESUMO

Evidence suggests a proinflammatory role of lysophosphatidic acid (LPA) in various pathologic abnormalities, including in the central nervous system. Herein, we describe LPA as an important mediator of inflammation after spinal cord injury (SCI) in zebrafish and mice. Furthermore, we describe a novel monoclonal blocking antibody raised against LPA that potently inhibits LPA's effect in vitro and in vivo. This antibody, B3, specifically binds LPA, prevents it from interacting with its complement of receptors, and blocks LPA's effects on the neuronal differentiation of human neural stem/progenitor cells, demonstrating its specificity toward LPA signaling. When administered systemically to mice subjected to SCI, B3 substantially reduced glial inflammation and neuronal death. B3-treated animals demonstrated significantly more neuronal survival upstream of the lesion site, with some functional improvement. This study describes the use of anti-LPA monoclonal antibody as a novel therapeutic approach for the treatment of SCI.


Assuntos
Lisofosfolipídeos/antagonistas & inibidores , Recuperação de Função Fisiológica , Transdução de Sinais , Traumatismos da Medula Espinal/patologia , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Células CHO , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Inflamação/complicações , Inflamação/patologia , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Atividade Motora/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Peixe-Zebra
7.
J Neurotrauma ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279302

RESUMO

Blast-induced traumatic brain injury (bTBI) has been identified as the signature injury of Operation Iraqi Freedom and Operation Enduring Freedom. Although the incidence of bTBI increased significantly after the introduction of improvised explosive devices, the mechanism of the injury is still uncertain, which is negatively impacting the development of suitable countermeasures. Identification of suitable biomarkers that could aid in the proper diagnosis of and prognosis for both acute and chronic bTBI is essential since bTBI frequently is occult and may not be associated with overtly detectable injuries to the head. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid (CSF) have been reported to increase acutely after non-blast related brain injuries. In the present study, we have evaluated the utility of LPA levels measured in the CSF and plasma of laboratory rats as an acute and chronic biomarker of brain injury resulting from single and tightly coupled repeated blast overpressure exposures. In the CSF, many LPA species increased at acute time-points, returned to normal levels at 1 month, and increased again at 6 months and 1 year post-blast overpressure exposures. In the plasma, several LPA species increased acutely, returned to normal levels by 24 h, and were significantly decreased at 1 year post-blast overpressure exposures. These decreases in LPA species in the plasma were associated with decreased levels of lysophosphatidyl choline, suggesting a defective upstream biosynthetic pathway of LPAs in the plasma. Notably, the changes in LPA levels in the CSF (but not plasma) negatively correlated with neurobehavioral functions in these rats, suggesting that CSF levels of LPAs may provide a suitable biomarker of bTBI that reflects severity of injury.

8.
Proc Natl Acad Sci U S A ; 106(42): 17717-22, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19815502

RESUMO

The pleiotropic signaling lipid sphingosine-1-phosphate (S1P) plays significant roles in angiogenesis, heart disease, and cancer. LT1009 (also known as sonepcizumab) is a humanized monoclonal antibody that binds S1P with high affinity and specificity. Because the antibody is currently in clinical trials, it is important to confirm by structural and biochemical analyses that it binds its target in a predictable manner. Therefore, we determined the structure of a complex between the LT1009 antibody Fab fragment and S1P refined to 1.90 A resolution. The antibody employs unique and diverse strategies to recognize its antigen. Two metal ions bridge complementarity determining regions from the antibody light chain and S1P. The coordination geometry, inductively coupled plasma spectroscopy, surface plasmon resonance spectroscopy, and biochemical assays suggest that these are Ca(2+). The amino alcohol head group of the sphingosine backbone is recognized through hydrogen bonding interactions from 1 aa side chain and polypeptide backbone atoms of the antibody light and heavy chains. The S1P hydrophobic tail is almost completely enclosed within a hydrophobic channel formed primarily by the heavy chain. Both treatment of the complex with metal chelators and mutation of amino acids in the light chain that coordinate the metal atoms or directly contact the polar head group abrogate binding, while mutations within the hydrophobic cavity also decrease S1P binding affinity. The structure suggests mechanistic details for recognition of a signaling lipid by a therapeutic antibody candidate. Moreover, this study provides direct structural evidence that antibodies are capable of using metals to bridge antigen:antibody complexes.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Fragmentos Fab das Imunoglobulinas/química , Lisofosfolipídeos/química , Lisofosfolipídeos/imunologia , Esfingosina/análogos & derivados , Animais , Anticorpos Monoclonais/genética , Afinidade de Anticorpos , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos/genética , Cálcio/química , Cristalografia por Raios X , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Técnicas In Vitro , Lisofosfolipídeos/antagonistas & inibidores , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Esfingosina/antagonistas & inibidores , Esfingosina/química , Esfingosina/imunologia , Ressonância de Plasmônio de Superfície
9.
Front Neurol ; 11: 611816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384658

RESUMO

Exposure to blast overpressure waves is implicated as the major cause of ocular injuries and resultant visual dysfunction in veterans involved in recent combat operations. No effective therapeutic strategies have been developed so far for blast-induced ocular dysfunction. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells, and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid have been reported to increase acutely in patients with traumatic brain injury (TBI) as well as in a controlled cortical impact (CCI) TBI model in mice. In the present study, we have evaluated the efficacy of a single intravenous administration of a monoclonal LPA antibody (25 mg/kg) given at 1 h post-blast for protection against injuries to the retina and associated ocular dysfunctions. Our results show that a single 19 psi blast exposure significantly increased the levels of several species of LPA in blood plasma at 1 and 4 h post-blast. The anti-LPA antibody treatment significantly decreased glial cell activation and preserved neuronal cell morphology in the retina on day 8 after blast exposure. Optokinetic measurements indicated that anti-LPA antibody treatment significantly improved visual acuity in both eyes on days 2 and 6 post-blast exposure. Anti-LPA antibody treatment significantly increased rod photoreceptor and bipolar neuronal cell signaling in both eyes on day 7 post-blast exposure. These results suggest that blast exposure triggers release of LPAs, which play a major role promoting blast-induced ocular injuries, and that a single early administration of anti-LPA antibodies provides significant protection.

10.
J Lipid Res ; 50(11): 2245-57, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19509417

RESUMO

Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid involved in multiple physiological processes. Importantly, dysregulated S1P levels are associated with several pathologies, including cardiovascular and inflammatory diseases and cancer. This report describes the successful production and characterization of a murine monoclonal antibody, LT1002, directed against S1P, using novel immunization and screening methods applied to bioactive lipids. We also report the successful generation of LT1009, the humanized variant of LT1002, for potential clinical use. Both LT1002 and LT1009 have high affinity and specificity for S1P and do not cross-react with structurally related lipids. Using an in vitro bioassay, LT1002 and LT1009 were effective in blocking S1P-mediated release of the pro-angiogenic and prometastatic cytokine, interleukin-8, from human ovarian carcinoma cells, showing that both antibodies can out-compete S1P receptors in binding to S1P. In vivo anti-angiogenic activity of all antibody variants was demonstrated using the murine choroidal neovascularization model. Importantly, intravenous administration of the antibodies showed a marked effect on lymphocyte trafficking. The resulting lead candidate, LT1009, has been formulated for Phase 1 clinical trials in cancer and age-related macular degeneration. The anti-S1P antibody shows promise as a novel, first-in-class therapeutic acting as a "molecular sponge" to selectively deplete S1P from blood and other compartments where pathological S1P levels have been implicated in disease progression or in disorders where immune modulation may be beneficial.


Assuntos
Anticorpos Monoclonais/imunologia , Lisofosfolipídeos/imunologia , Esfingosina/análogos & derivados , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/prevenção & controle , Reações Cruzadas/imunologia , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Interleucinas/metabolismo , Cinética , Lisofosfolipídeos/metabolismo , Degeneração Macular/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Mutagênese , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Esfingosina/imunologia , Esfingosina/metabolismo , Ressonância de Plasmônio de Superfície
11.
Exp Eye Res ; 88(3): 367-77, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18723015

RESUMO

The efficacy of novel monoclonal antibodies that neutralize the pro-angiogenic mediator, sphingosine-1-phosphate (S1P), were tested using in vitro and in vivo angiogenesis models, including choroidal neovascularization (CNV) induced by laser disruption of Bruch's membrane. S1P receptor levels in human brain choroid plexus endothelial cells (CPEC), human lung microvascular endothelial cells, human retinal vascular endothelial cells, and circulating endothelial progenitor cells were examined by semi-quantitative PCR. The ability of murine or humanized anti-S1P monoclonal antibodies (mAbs) to inhibit S1P-mediated microvessel tube formation by CPEC on Matrigel was evaluated and capillary density in subcutaneous growth factor-loaded Matrigel plugs was determined following anti-S1P treatment. S1P promoted in vitro capillary tube formation in CPEC consistent with the presence of cognate S1P(1-5) receptor expression by these cells and the S1P antibody induced a dose-dependent reduction in microvessel tube formation. In a murine model of laser-induced rupture of Bruch's membrane, S1P was detected in posterior cups of mice receiving laser injury, but not in uninjured controls. Intravitreous injection of anti-S1P mAbs dramatically inhibited CNV formation and sub-retinal collagen deposition in all treatment groups (p<0.05 compared to controls), thereby identifying S1P as a previously unrecognized mediator of angiogenesis and subretinal fibrosis in this model. These findings suggest that neutralizing S1P with anti-S1P mAbs may be a novel method of treating patients with exudative age-related macular degeneration by reducing angiogenesis and sub-retinal fibrosis, which are responsible for visual acuity loss in this disease.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Neovascularização de Coroide/prevenção & controle , Lisofosfolipídeos/imunologia , Esfingosina/análogos & derivados , Inibidores da Angiogênese/farmacologia , Animais , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/patologia , Colágeno , Modelos Animais de Doenças , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Fibrose/prevenção & controle , Expressão Gênica , Laminina , Lasers , Lisofosfolipídeos/análise , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Proteoglicanas , RNA Mensageiro/genética , Coelhos , Receptores de Lisoesfingolipídeo/biossíntese , Receptores de Lisoesfingolipídeo/genética , Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Esfingosina/análise , Esfingosina/imunologia , Esfingosina/farmacologia , Corpo Vítreo/química
12.
Leukemia ; 33(12): 2884-2897, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31097785

RESUMO

Although the over-expression of angiogenic factors is reported in diffuse large B-cell lymphoma (DLBCL), the poor response to anti-VEGF drugs observed in clinical trials suggests that angiogenesis in these tumours might be driven by VEGF-independent pathways. We show that sphingosine kinase-1 (SPHK1), which generates the potent bioactive sphingolipid sphingosine-1-phosphate (S1P), is over-expressed in DLBCL. A meta-analysis of over 2000 cases revealed that genes correlated with SPHK1 mRNA expression in DLBCL were significantly enriched for tumour angiogenesis meta-signature genes; an effect evident in both major cell of origin (COO) and stromal subtypes. Moreover, we found that S1P induces angiogenic signalling and a gene expression programme that is present within the tumour vasculature of SPHK1-expressing DLBCL. Importantly, S1PR1 functional antagonists, including Siponimod, and the S1P neutralising antibody, Sphingomab, inhibited S1P signalling in DLBCL cells in vitro. Furthermore, Siponimod, also reduced angiogenesis and tumour growth in an S1P-producing mouse model of angiogenic DLBCL. Our data define a potential role for S1P signalling in driving an angiogenic gene expression programme in the tumour vasculature of DLBCL and suggest novel opportunities to target S1P-mediated angiogenesis in patients with DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Lisofosfolipídeos/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Transcriptoma , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/patologia , Lisofosfolipídeos/genética , Camundongos , RNA Mensageiro/genética , Esfingosina/genética , Esfingosina/metabolismo
13.
Exp Eye Res ; 87(4): 367-75, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18687328

RESUMO

Sphingosine-1-phosphate (S1P) is a pleiotropic lysolipid that has recently been implicated in the regulation of tissue fibrosis. However, the fibrogenic potential of S1P in the eye has not previously been investigated. In the current study, we evaluated cells from the anterior and posterior segments of the eye for the presence of S1P and their potential ability to produce and respond to S1P. In addition, we investigated the regulatory role of S1P as a mediator of proliferation, cellular transformation and pro-fibrotic protein expression in human retinal pigmented epithelial cells. Expression of S1P receptors and sphingosine kinases (the enzymes that produce S1P) was examined using RT-PCR, and intracellular localization of S1P was examined using immunoblotting, immunohistochemistry and ELISA in primary human retinal pigmented epithelial (RPE) cells, primary human conjunctival fibroblasts (ConF), and primary human corneal fibroblasts (CF). RPE cell proliferation was determined using an MTT-based cell proliferation assay, and RPE myofibroblast transformation, collagen type I production and profibrotic protein expression were assessed using immunofluorescence, ELISA and immunoblot. S1P(1-3, 5) receptors and sphingosine kinases 1 and 2 were expressed and intracellular pools of S1P were detected in RPE cells, ConF and CF. S1P stimulated RPE cell proliferation in a dose- and time-dependent manner. S1P induced myofibroblast transformation of RPE cells, as indicated by increased alpha-smooth muscle actin (alpha-SMA) expression and its incorporation into prominent stress fibers, and promoted collagen type I production. S1P stimulated the expression of plasminogen activator inhibitor-1 (PAI-1) and heat shock protein 47 (HSP47), two proteins that are linked to increased tissue fibrosis. Combined, these data demonstrate that RPE cells, ConF and CF from the human eye not only have the molecular ability to produce and respond to S1P, but also contain S1P. Furthermore, S1P promotes proliferation, myofibroblast transformation, collagen production and pro-fibrotic protein expression by human RPE cells. These data suggest that S1P is a previously unrecognized mediator of profibrotic cellular function and signaling in the eye.


Assuntos
Olho/metabolismo , Lisofosfolipídeos/fisiologia , Esfingosina/análogos & derivados , Segmento Anterior do Olho/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/biossíntese , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Lisofosfolipídeos/análise , Lisofosfolipídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Esfingosina/análise , Esfingosina/farmacologia , Esfingosina/fisiologia
14.
Methods Mol Biol ; 1697: 43-56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28560513

RESUMO

Sphingosine-1-phosphate (S1P) and the enzyme primarily responsible for its production, sphingosine kinase-1 (SphK-1), are dysregulated in multiple human diseases including cancer, multiple sclerosis (MS), diabetes, neurological diseases, fibrosis, and certain pathologies associated with impaired angiogenesis such as age-related macular degeneration (AMD). Antibody-based techniques to identify and localize S1P and SphK-1 within cells and tissue specimens represent a powerful tool, not only to understand biological role of these molecules but also to validate these unique in-class targets in multiple state diseases. Consequently, the potential applications of these molecules for therapy and diagnostic purposes are currently under investigation. Here, we describe a new improved technique, Agitated Low Temperature Epitope Retrieval (ALTER) for staining procedures, to identify expression of S1P and SphK-1 in human frozen tissue samples. The challenges encountered in the process of localization in tissue samples of lipid molecules such as S1P are discussed.


Assuntos
Fígado/metabolismo , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/análise , Esfingosina/análogos & derivados , Linhagem Celular , Secções Congeladas , Humanos , Imuno-Histoquímica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/metabolismo
15.
Pain ; 158(11): 2181-2188, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29028747

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid that impacts neurological outcomes after neurotrauma by inhibiting neuroregeneration, promoting inflammation, and contributing to behavioral deficits. Blocking LPA signaling with a novel anti-LPA monoclonal antibody (mAb) is neuroprotective after traumatic brain injury (TBI) if given to injured animals whose blood-brain barrier (BBB) has been compromised. It is hypothesized that the anti-LPA mAb could improve chronic pain initiated by TBI. However, poor brain penetration after systemic application of the antibody makes access to the central nervous system (CNS) problematic in situations where the BBB is intact. Our experiments investigated whether intranasal delivery of the anti-LPA mAb could bypass the BBB, allowing for direct entry of the antibody to certain areas of the CNS. When the humanized anti-LPA mAb, LT3114, was intranasally applied to injured rats within 30 minutes after mild TBI using the central lateral percussion model, enzyme-linked immunospecific assay and immunohistochemistry demonstrated antibody uptake to several areas in the CNS, including the area of cortical injury, the corpus callosum, cerebellum, and the subventricular region. Compared with control rats that received LT3114 but no TBI, TBI rats demonstrated significantly higher concentrations of intranasally administered LT3114 antibody in some tissues. In behavioral studies, a significant attenuation of mechanical allodynia after TBI was observed in the anti-LPA treatment group (P = 0.0079), when compared with vehicle controls within 14 days after TBI. These results suggest that intranasal application of the anti-LPA antibody directly accesses CNS sites involved in TBI-related pain and that this access attenuates pain sequelae to the neurotrauma.


Assuntos
Anticorpos/administração & dosagem , Lesões Encefálicas Traumáticas/complicações , Hiperalgesia/etiologia , Hiperalgesia/terapia , Lisofosfolipídeos/imunologia , Administração Intranasal , Animais , Anticorpos/sangue , Anticorpos/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Masculino , Medição da Dor , Ratos , Ratos Sprague-Dawley
16.
Sci Signal ; 10(472)2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28351953

RESUMO

Sphingosine kinase 1 (SphK1) promotes cell proliferation and survival, and its abundance is often increased in tumors. SphK1 produces the signaling lipid sphingosine 1-phosphate (S1P), which activates signaling cascades downstream five G protein-coupled receptors (S1P1-5) to modulate vascular and immune system function and promote proliferation. We identified a new function of the SphK1-S1P pathway specifically in the control of mitosis. SphK1 depletion in HeLa cells caused prometaphase arrest, whereas its overexpression or activation accelerated mitosis. Increasing the abundance of S1P promoted mitotic progression, overrode the spindle assembly checkpoint (SAC), and led to chromosome segregation defects. S1P was secreted through the transporter SPNS2 and stimulated mitosis by binding to and activating S1P5 on the extracellular side, which then activated the intracellular phosphatidylinositol 3-kinase (PI3K)-AKT pathway. Knockdown of S1P5 prevented the S1P-induced spindle defect phenotype. RNA interference assays revealed that the mitotic kinase Polo-like kinase 1 (PLK1) was an important effector of S1P-S1P5 signaling-induced mitosis in HeLa cells. Our findings identify an extracellular signal and the downstream pathway that promotes mitotic progression and may indicate potential therapeutic targets to inhibit the proliferation of cancer cells.


Assuntos
Segregação de Cromossomos/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Mitose/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Camundongos Knockout , Microscopia Confocal , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Receptores de Lisoesfingolipídeo/genética , Esfingosina/farmacologia , Imagem com Lapso de Tempo/métodos , Quinase 1 Polo-Like
17.
Oncol Rep ; 38(4): 1932-1940, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28765947

RESUMO

Glioblastoma multiforme (GBM) is the most common primary, intracranial malignancy of the central nervous system. The standard treatment protocol, which involves surgical resection, and concurrent radiation with adjuvant temozolomide (TMZ), still imparts a grim prognosis. Ultimately, all GBMs exhibit recurrence or progression, developing resistance to standard treatment. This study demonstrates that GBMs acquire resistance to radiation via upregulation of acid ceramidase (ASAH1) and sphingosine­1-phosphate (Sph-1P). Moreover, inhibition of ASAH1 and Sph-1P, either with humanized monoclonal antibodies, small molecule drugs (i.e. carmofur), or a combination of both, led to suppression of GBM cell growth. These results suggest that ASAH1 and Sph-1P may be excellent targets for the treatment of new GBMs and recurrent GBMs, especially since the latter overexpresses ASAH1.


Assuntos
Ceramidase Ácida/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/radioterapia , Glioblastoma/enzimologia , Glioblastoma/radioterapia , Ceramidase Ácida/biossíntese , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Lisofosfolipídeos/metabolismo , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/patologia , Tolerância a Radiação , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Regulação para Cima
18.
Circ Res ; 92(6): 589-91, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12637370

RESUMO

Generation of proapoptotic sphingolipids by neutral sphingomyelinase activation is an early response to hypoxia/reoxygenation (HR) in cardiomyocytes. Factor associated with neutral sphingomyelinase activation (FAN) mediates activation of sphingomyelinase and subsequent apoptosis. However, the participation of FAN in HR-induced cardiomyocyte cell death has not been elucidated. We therefore investigated the expression and role of FAN in rat cardiomyocytes. A cDNA was isolated from rat heart encoding putative rat FAN. Reverse transcriptase-polymerase chain reaction, immunoelectron microscopy, and immunofluorescence demonstrated for the first time the expression of FAN specifically in rat cardiomyocytes. FAN expression was confirmed by the finding that expression of a dominant-negative FAN almost completely abrogated HR-induced cell death, whereas overexpression of wild-type FAN led to an increase. Treatment of FAN and dominant-negative FAN--expressing cells with C2-ceramide produced substantial cell death, indicating dominant-negative FAN exerts its protective action by interfering with the activation of the sphingolipid cascade. Taking these results together, we conclude that FAN is a previously undescribed and important HR signaling component in the heart and that inhibition of FAN may provide a novel intervention point for reducing ischemia/reperfusion injury.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Apoptose , Miócitos Cardíacos/metabolismo , Proteínas/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Hipóxia Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Dados de Sequência Molecular , Miócitos Cardíacos/citologia , Proteínas/química , Ratos , Alinhamento de Sequência
19.
Mol Ther Oncolytics ; 3: 16004, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119118

RESUMO

The development of new therapies that can prevent recurrence and progression of nonmuscle invasive bladder cancer remains an unmet clinical need. The continued cost of monitoring and treatment of recurrent disease, along with its high prevalence and incidence rate, is a strain on healthcare economics worldwide. The current work describes the characterization and pharmacological evaluation of VAX-IP as a novel bacterial minicell-based biopharmaceutical agent undergoing development for the treatment of nonmuscle invasive bladder cancer and other oncology indications. VAX-IP minicells selectively target two oncology-associated integrin heterodimer subtypes to deliver a unique bacterial cytolysin protein toxin, perfringolysin O, specifically to cancer cells, rapidly killing integrin-expressing murine and human urothelial cell carcinoma cells with a unique tumorlytic mechanism. The in vivo pharmacological evaluation of VAX-IP minicells as a single agent administered intravesically in two clinically relevant variations of a syngeneic orthotopic model of superficial bladder cancer results in a significant survival advantage with 28.6% (P = 0.001) and 16.7% (P = 0.003) of animals surviving after early or late treatment initiation, respectively. The results of these preclinical studies warrant further nonclinical and eventual clinical investigation in underserved nonmuscle invasive bladder cancer patient populations where complete cures are achievable.

20.
Neuron ; 92(1): 126-142, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27641493

RESUMO

Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2-/- thalamus restored the aberrant cortical innervation. We identified radixin as a PRG-2 interaction partner and showed that radixin accumulation in growth cones and its LPA-dependent phosphorylation depend on its binding to specific regions within the C-terminal region of PRG-2. In vivo recordings and whisker-specific behavioral tests demonstrated sensory discrimination deficits in PRG-2-/- animals. Our data show that bioactive phospholipids and PRG-2 are critical for guiding thalamic axons to their proper cortical targets.


Assuntos
Orientação de Axônios/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas do Citoesqueleto/fisiologia , Lisofosfolipídeos/fisiologia , Proteínas de Membrana/fisiologia , Transdução de Sinais/fisiologia , Tálamo/crescimento & desenvolvimento , Animais , Córtex Cerebral/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Discriminação Psicológica/fisiologia , Cones de Crescimento/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Fosforilação , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa