Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vis Exp ; (186)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36036615

RESUMO

Cell-free protein synthesis (CFPS) has recently become very popular in the field of synthetic biology due to its numerous advantages. Using linear DNA templates for CFPS will further enable the technology to reach its full potential, decreasing the experimental time by eliminating the steps of cloning, transformation, and plasmid extraction. Linear DNA can be rapidly and easily amplified by PCR to obtain high concentrations of the template, avoiding potential in vivo expression toxicity. However, linear DNA templates are rapidly degraded by exonucleases that are naturally present in the cell extracts. There are several strategies that have been proposed to tackle this problem, such as adding nuclease inhibitors or chemical modification of linear DNA ends for protection. All these strategies cost extra time and resources and are yet to obtain near-plasmid levels of protein expression. A detailed protocol for an alternative strategy is presented here for using linear DNA templates for CFPS. By using cell extracts from exonuclease-deficient knockout cells, linear DNA templates remain intact without requiring any end-modifications. We present the preparation steps of cell lysate from Escherichia coli BL21 Rosetta2 ΔrecBCD strain by sonication lysis and buffer calibration for Mg-glutamate (Mg-glu) and K-glutamate (K-glu) specifically for linear DNA. This method is able to achieve protein expression levels comparable to that from plasmid DNA in E. coli CFPS.


Assuntos
Escherichia coli , Exonucleases , Extratos Celulares , Sistema Livre de Células , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleases/metabolismo , Glutamatos , Moldes Genéticos
2.
Nat Commun ; 13(1): 5082, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038542

RESUMO

Here we introduce the Galaxy-SynBioCAD portal, a toolshed for synthetic biology, metabolic engineering, and industrial biotechnology. The tools and workflows currently shared on the portal enables one to build libraries of strains producing desired chemical targets covering an end-to-end metabolic pathway design and engineering process from the selection of strains and targets, the design of DNA parts to be assembled, to the generation of scripts driving liquid handlers for plasmid assembly and strain transformations. Standard formats like SBML and SBOL are used throughout to enforce the compatibility of the tools. In a study carried out at four different sites, we illustrate the link between pathway design and engineering with the building of a library of E. coli lycopene-producing strains. We also benchmark our workflows on literature and expert validated pathways. Overall, we find an 83% success rate in retrieving the validated pathways among the top 10 pathways generated by the workflows.


Assuntos
Escherichia coli , Biologia Sintética , Biotecnologia , Escherichia coli/genética , Engenharia Metabólica , Software
3.
Commun Biol ; 4(1): 104, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483589

RESUMO

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Assuntos
Evolução Biológica , Cromossomos de Insetos , Genoma de Inseto , Polydnaviridae/genética , Vespas/genética , Animais , Sequência de Bases , Sequência Conservada , Nudiviridae/genética , Receptores Odorantes/genética , Olfato , Simbiose , Sintenia , Vespas/virologia
4.
ACS Infect Dis ; 6(5): 1008-1017, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32195576

RESUMO

Characterizing how multidrug-resistant bacteria circumvent the action of clinically used or novel antibiotics requires a detailed understanding of how the antibiotics interact with and cross bacterial membranes to accumulate in the cells and exert their action. When monitoring the interactions of drugs with bacteria, it remains challenging to differentiate functionally relevant internalized drug levels from nonspecific binding. Fluorescence is a method of choice for observing dynamics of biomolecules. In order to facilitate studies involving aminoglycoside antibiotics, we have generated fluorescently labeled aminoglycoside derivatives with uptake and bactericidal activities similar, albeit with a moderate loss, to those of the parent drug. The method combines fluorescence microscopy with fluorescence-activated cell sorting (FACS) using neomycin coupled to nonpermeable cyanine dyes. Fluorescence imaging allowed membrane-bound antibiotic to be distinguished from molecules in the cytoplasm. Patterns of uptake were assigned to different populations in the FACS analysis. Our study illustrates how fluorescent derivatives of an aminoglycoside enable a robust characterization of the three components of uptake: membrane binding, EDPI, and EDPII. Because EDPI levels are weak compared to the two other types of accumulation and critical for the action of these drugs, the three components of uptake must be taken into account separately when drawing conclusions about aminoglycoside function.


Assuntos
Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Bactérias/metabolismo , Corantes , Citometria de Fluxo , Microscopia de Fluorescência , Neomicina
6.
Med Sci (Paris) ; 34(12): 1111-1114, 2018 12.
Artigo em Francês | MEDLINE | ID: mdl-30623769
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa