Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 61(4): 625-639, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26876939

RESUMO

Reduction of translational fidelity often occurs in cells with high rates of protein synthesis, generating defective ribosomal products. If not removed, such aberrant proteins can be a major source of cellular stress causing human diseases. Here, we demonstrate that mTORC1 promotes the formation of immunoproteasomes for efficient turnover of defective proteins and cell survival. mTORC1 sequesters precursors of immunoproteasome ß subunits via PRAS40. When activated, mTORC1 phosphorylates PRAS40 to enhance protein synthesis and simultaneously to facilitate the assembly of the ß subunits for forming immunoproteasomes. Consequently, the PRAS40 phosphorylations play crucial roles in clearing aberrant proteins that accumulate due to mTORC1 activation. Mutations of RAS, PTEN, and TSC1, which cause mTORC1 hyperactivation, enhance immunoproteasome formation in cells and tissues. Those mutations increase cellular dependence on immunoproteasomes for stress response and survival. These results define a mechanism by which mTORC1 couples elevated protein synthesis with immunoproteasome biogenesis to protect cells against protein stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Animais , Sobrevivência Celular , Células HCT116 , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Mutação , PTEN Fosfo-Hidrolase/genética , Fosforilação , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas ras/genética
2.
Br J Haematol ; 194(1): 140-144, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843048

RESUMO

Following the 2017 European LeukemiaNet (ELN) guidelines, we changed our practice from using high-dose cytarabine (HIDAC-3 g/m2 q12h-D1,3,5) to intermediate-dose cytarabine (IDAC-1·5 g/m2 q12h-D1,3,5/D1-3) for consolidation in young(<60 years) favourable-risk acute myeloid leukaemia (AML) patients. We assessed the clinical impact of this practice change. Of 80 patients, 51 received HIDAC prior to the protocol change, and subsequently, 29 received IDAC. The three-year risk of relapse was significantly higher with IDAC [61%; 95% confidence interval (CI) 40-82] compared with HIDAC (22%; 10-34), P < 0·01. Our findings suggest HIDAC, rather than IDAC, is the preferred dose for single-agent cytarabine consolidation in young, favourable-risk AML following 7+3 induction.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Quimioterapia de Consolidação , Citarabina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Citarabina/administração & dosagem , Daunorrubicina/administração & dosagem , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Idarubicina/administração & dosagem , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/epidemiologia , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Recidiva , Indução de Remissão , Estudos Retrospectivos , Risco , Adulto Jovem
3.
J Proteome Res ; 18(4): 1842-1856, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30730747

RESUMO

Resistance to chemotherapy can occur through a wide variety of mechanisms. Resistance to tyrosine kinase inhibitors (TKIs) often arises from kinase mutations-however, "off-target" resistance occurs but is poorly understood. Previously, we established cell line resistance models for three TKIs used in chronic myeloid leukemia treatment, and found that resistance was not attributed entirely to failure of kinase inhibition. Here, we performed global, integrated proteomic and transcriptomic profiling of these cell lines to describe mechanisms of resistance at the protein and gene expression level. We used whole transcriptome sequencing and SWATH-based data-independent acquisition mass spectrometry (DIA-MS), which does not require isotopic labels and provides quantitative measurements of proteins in a comprehensive, unbiased fashion. The proteomic and transcriptional data were correlated to generate an integrated understanding of the gene expression and protein alterations associated with TKI resistance. We defined mechanisms of resistance and two novel markers, CA1 and alpha-synuclein, that were common to all TKIs tested. Resistance to all of the TKIs was associated with oxidative stress responses, hypoxia signatures, and apparent metabolic reprogramming of the cells. Metabolite profiling and glucose-dependence experiments showed that resistant cells had routed their metabolism through glycolysis (particularly through the pentose phosphate pathway) and exhibited disruptions in mitochondrial metabolism. These experiments are the first to report a global, integrated proteomic, transcriptomic, and metabolic analysis of TKI resistance. These data suggest that although the mechanisms are complex, targeting metabolic pathways along with TKI treatment may overcome pan-TKI resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Metaboloma , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Dasatinibe/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/fisiologia
4.
Blood ; 124(22): 3274-83, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25316678

RESUMO

Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific functions of these pathways in AML are unclear, thwarting the rational application of targeted therapeutics. To elucidate the downstream functions of activated NRAS in AML, we used a murine model that harbors Mll-AF9 and a tetracycline-repressible, activated NRAS (NRAS(G12V)). Using computational approaches to explore our gene-expression data sets, we found that NRAS(G12V) enforced the leukemia self-renewal gene-expression signature and was required to maintain an MLL-AF9- and Myb-dependent leukemia self-renewal gene-expression program. NRAS(G12V) was required for leukemia self-renewal independent of its effects on growth and survival. Analysis of the gene-expression patterns of leukemic subpopulations revealed that the NRAS(G12V)-mediated leukemia self-renewal signature is preferentially expressed in the leukemia stem cell-enriched subpopulation. In a multiplexed analysis of RAS-dependent signaling, Mac-1(Low) cells, which harbor leukemia stem cells, were preferentially sensitive to NRAS(G12V) withdrawal. NRAS(G12V) maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell-specific therapies. Together, these experimental results define a RAS oncogene-driven function that is critical for leukemia maintenance and represents a novel mechanism of oncogene addiction.


Assuntos
Proliferação de Células/genética , GTP Fosfo-Hidrolases/fisiologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas de Membrana/fisiologia , Substituição de Aminoácidos , Animais , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/genética , Regulação Leucêmica da Expressão Gênica , Glicina/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Oncogenes/fisiologia , Transcriptoma , Células Tumorais Cultivadas , Valina/genética
5.
Haematologica ; 101(10): 1190-1199, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27418650

RESUMO

Juvenile myelomonocytic leukemia is a rare myeloproliferative neoplasm characterized by hyperactive RAS signaling. Neurofibromin1 (encoded by the NF1 gene) is a negative regulator of RAS activation. Patients with neurofibromatosis type 1 harbor loss-of-function mutations in NF1 and have a 200- to 500-fold increased risk of juvenile myelomonocytic leukemia. Leukemia cells from patients with juvenile myelomonocytic leukemia display hypersensitivity to certain cytokines, such as granulocyte-macrophage colony-stimulating factor. The granulocyte-macrophage colony-stimulating factor receptor utilizes pre-associated JAK2 to initiate signals after ligand binding. JAK2 subsequently activates STAT5, among other downstream effectors. Although STAT5 is gaining recognition as an important mediator of growth factor signaling in myeloid leukemias, the contribution of STAT5 to the development of hyperactive RAS-initiated myeloproliferative disease has not been well described. In this study, we investigated the consequence of STAT5 attenuation via genetic and pharmacological approaches in Nf1-deficient murine models of juvenile myelomonocytic leukemia. We found that homozygous Stat5 deficiency extended the lifespan of Nf1-deficient mice and eliminated the development of myeloproliferative neoplasm associated with Nf1 gene loss. Likewise, we found that JAK inhibition with ruxolitinib attenuated myeloproliferative neoplasm in Nf1-deficient mice. Finally, we found that primary cells from a patient with KRAS-mutant juvenile myelomonocytic leukemia displayed reduced colony formation in response to JAK2 inhibition. Our findings establish a central role for STAT5 activation in the pathogenesis of juvenile myelomonocytic leukemia and suggest that targeting this pathway may be of clinical utility in these patients.


Assuntos
Janus Quinase 2/metabolismo , Leucemia Mielomonocítica Juvenil/etiologia , Transtornos Mieloproliferativos/etiologia , Neurofibromina 1/deficiência , Fator de Transcrição STAT5/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Leucemia Mieloide/etiologia , Leucemia Mieloide/genética , Leucemia Mielomonocítica Juvenil/genética , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
6.
Biol Blood Marrow Transplant ; 21(5): 866-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25620751

RESUMO

Various cytogenetic risk scoring systems may determine prognosis for patients with myelodysplastic syndromes (MDS). We evaluated 4 different risk scoring systems in predicting outcome after allogeneic hematopoietic cell transplantation (alloHCT). We classified 124 patients with MDS using the International Prognostic Scoring System (IPSS), the revised International Prognostic Scoring System (R-IPSS), Armand's transplantation-specific cytogenetic grouping, and monosomal karyotype (MK) both at the time of diagnosis and at alloHCT. After adjusting for other important factors, MK at diagnosis (compared with no MK) was associated with poor 3-year disease-free survival (DFS) (27% [95% confidence interval, 12% to 42%] versus 39% [95% confidence interval, 28% to 50%], P = .02) and overall survival (OS) (29% [95% confidence interval, 14% to 44%] versus 47% [95% confidence interval, 36% to 59%], P = .02). OS but not DFS was affected by MK at alloHCT. MK frequency was uncommon in low-score R-IPPS and IPSS. Although IPSS and R-IPSS discriminated good/very good groups from poor/very poor groups, patients with intermediate-risk scores had the worst outcomes and, therefore, these scores did not show a progressive linear discriminating trend. Cytogenetic risk score change between diagnosis and alloHCT was uncommon and did not influence OS. MK cytogenetics in MDS are associated with poor survival, suggesting the need for alternative or intensified approaches to their treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Monossomia , Síndromes Mielodisplásicas , Aloenxertos , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/terapia , Estudos Retrospectivos , Taxa de Sobrevida
7.
Bioorg Med Chem ; 23(15): 4737-4745, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26088334

RESUMO

Parthenolide (PTL) is a sesquiterpene lactone natural product with anti-proliferative activity to cancer cells. Selective eradication of leukemic stem cells (LSCs) over healthy hematopoietic stem cells (HSCs) by PTL has been demonstrated in previous studies, which suggests PTL and related molecules may be useful for targeting LSCs. Eradication of LSCs is required for curative therapy. Chemical optimizations of PTL to improve potency and pharmacokinetic parameters have focused largely on the α-methylene-γ-butyrolactone, which is essential for activity. Conversely, we evaluated modifications to the C1-C10 olefin and benchmarked new inhibitors to PTL with respect to inhibitory potency across a panel of cancer cell lines, ability to target drug-resistant acute myeloid leukemia (AML) cells, efficacy for inhibiting clonal growth of AML cells, toxicity to healthy bone marrow cells, and efficiency for promoting intracellular reactive oxygen species (ROS) levels. Cyclopropane 4 was found to possess less toxicity to healthy bone marrow cells, enhanced potency for the induction of cellular ROS, and similar broad-spectrum anti-proliferative activity to cancer cells in comparison to PTL.


Assuntos
Antineoplásicos/síntese química , Sesquiterpenos/química , Alcenos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Camundongos , Conformação Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/síntese química , Sesquiterpenos/farmacologia
8.
Cancer Res ; 84(4): 577-597, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967363

RESUMO

RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival. Consequently, PARPi induced DNA damage and cell death in SF-mutant leukemias in an R-loop-dependent manner. PARPi further increased aberrant R-loop levels, causing higher transcription-replication collisions and triggering ATR activation in SF-mutant leukemias. Ultimately, PARPi-induced DNA damage and cell death in SF-mutant leukemias could be enhanced by ATR inhibition. Finally, the level of PARP1 activity at R-loops correlated with PARPi sensitivity, suggesting that R-loop-associated PARP1 activity could be predictive of PARPi sensitivity in patients harboring SF gene mutations. This study highlights the potential of targeting different R-loop response pathways caused by spliceosome gene mutations as a therapeutic strategy for treating cancer. SIGNIFICANCE: Spliceosome-mutant leukemias accumulate R-loops and require PARP1 to resolve transcription-replication conflicts and genomic instability, providing rationale to repurpose FDA-approved PARP inhibitors for patients carrying spliceosome gene mutations.


Assuntos
Leucemia , Spliceossomos , Humanos , Spliceossomos/genética , Estruturas R-Loop , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo do DNA , Leucemia/tratamento farmacológico , Leucemia/genética , Fatores de Processamento de RNA/genética , Poli(ADP-Ribose) Polimerase-1/genética
9.
Leuk Lymphoma ; 64(7): 1262-1274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37161853

RESUMO

In acute myeloid leukemia (AML), leukemia stem cells (LSCs) have self-renewal potential and are responsible for relapse. We previously showed that, in Mll-AF9/NRASG12V murine AML, CD69 expression marks an LSC-enriched subpopulation with enhanced in vivo self-renewal capacity. Here, we used CyTOF to define activated signaling pathways in LSC subpopulations in Mll-AF9/NRASG12V AML. Furthermore, we compared the signaling activation states of CD69High and CD36High subsets of primary human AML. The human CD69High subset expresses low levels of Ki67 and high levels of NFκB and pMAPKAPKII. Additionally, the human CD69High AML subset also has enhanced colony-forming capacity. We applied Bayesian network modeling to compare the global signaling network within the human AML subsets. We find that distinct signaling states, distinguished by NFκB and pMAPKAPKII levels, correlate with divergent functional subsets, defined by CD69 and CD36 expression, in human AML. Targeting NFκB with proteasome inhibition diminished colony formation.


Immunophenotypically-defined murine AML stem cells harbor self-renewing and non-self-renewing subsets that display unique signaling characteristics.CD69, an NFκB target gene, marks a subset of human AML with increased colony forming capacity and reduced proliferation.NFκB activation correlates with the global signaling pathway activation state in human AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Teorema de Bayes , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo
10.
Blood Cancer J ; 13(1): 84, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217482

RESUMO

Multiple myeloma (MM) remains an incurable plasma cell (PC) malignancy. Although it is known that MM tumor cells display extensive intratumoral genetic heterogeneity, an integrated map of the tumor proteomic landscape has not been comprehensively evaluated. We evaluated 49 primary tumor samples from newly diagnosed or relapsed/refractory MM patients by mass cytometry (CyTOF) using 34 antibody targets to characterize the integrated landscape of single-cell cell surface and intracellular signaling proteins. We identified 13 phenotypic meta-clusters across all samples. The abundance of each phenotypic meta-cluster was compared to patient age, sex, treatment response, tumor genetic abnormalities and overall survival. Relative abundance of several of these phenotypic meta-clusters were associated with disease subtypes and clinical behavior. Increased abundance of phenotypic meta-cluster 1, characterized by elevated CD45 and reduced BCL-2 expression, was significantly associated with a favorable treatment response and improved overall survival independent of tumor genetic abnormalities or patient demographic variables. We validated this association using an unrelated gene expression dataset. This study represents the first, large-scale, single-cell protein atlas of primary MM tumors and demonstrates that subclonal protein profiling may be an important determinant of clinical behavior and outcome.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteômica , Plasmócitos/metabolismo
11.
Clin Nephrol Case Stud ; 10: 87-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583136

RESUMO

Kidney disease can be an initial presentation or a chronic manifestation of plasma cell dyscrasias. Here, we describe a rare presentation of kidney disease driven by lymphomatous infiltration of the kidney in a patient with Waldenstrom's macroglobulinemia (WM). A 70-year-old female with an 8-year history of WM (IgM, κ) was referred for declining renal function. Prior to presentation, she had stable WM disease without evidence of worsening disease burden. She had been previously hospitalized with SARS-CoV-2 infection and acute kidney injury (AKI). Her serum creatinine (sCr) peaked at 3.7 mg/dL (baseline 0.9 mg/dL) but recovered to 1.1 mg/dL by the time of discharge. Two months after discharge, her sCr increased to 1.9 mg/dL, and she had new proteinuria of 1.5 g/day. Kidney biopsy showed lymphomatous infiltration of the interstitium without glomerular involvement. Treatment with rituximab and bendamustine resulted in an improvement in renal function (sCr 1.4 mg/dL). WM is an uncommon hematologic malignancy, and extramedullary involvement, including renal involvement, is rare. This case emphasizes the importance of surveillance for kidney dysfunction in patients with plasma cell dyscrasias, even if patients appear to have stable lymphoproliferative disease.

12.
Mol Cancer Res ; 20(11): 1646-1658, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35900472

RESUMO

NRAS proteins are central regulators of proliferation, survival, and self-renewal in leukemia. Previous work demonstrated that the effects of oncogenic NRAS in mediating proliferation and self-renewal are mutually exclusive within leukemia subpopulations and that levels of oncogenic NRAS vary between highly proliferative and self-renewing leukemia subpopulations. These findings suggest that NRAS activity levels may be important determinants of leukemic behavior. To define how oncogenic NRAS levels affect these functions, we genetically engineered an acute myeloid leukemia (AML) cell line, THP-1, to express variable levels of NRASG12V. We replaced the endogenous NRASG12D gene with a tetracycline-inducible and dose-responsive NRASG12V transgene. Cells lacking NRASG12V oncoprotein were cell-cycle arrested. Intermediate levels of NRASG12V induced maximal proliferation; higher levels led to attenuated proliferation, increased G1 arrest, senescence markers, and maximal self-renewal capacity. Higher levels of the oncoprotein also induced self-renewal and mitochondrial genes. We used mass cytometry (CyTOF) to define the downstream signaling events that mediate these differential effects. Not surprisingly, we found that the levels of such canonical RAS-effectors as pERK and p4EBP1 correlated with NRASG12V levels. ß-Catenin, a mediator of self-renewal, also correlated with NRASG12V levels. These signaling intermediates may mediate the differential effects of NRASG12V in leukemia biology. Together, these data reveal that oncogenic NRAS levels are important determinants of leukemic behavior explaining heterogeneity in phenotypes within a clone. This system provides a new model to study RAS oncogene addiction and RAS-induced self-renewal in AML. IMPLICATIONS: Different levels of activated NRAS may exert distinct effects on proliferation and self-renewal.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Oncogenes , Proteínas Oncogênicas/genética , Proliferação de Células , Linhagem Celular
13.
Biology (Basel) ; 11(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36358254

RESUMO

Mutations in NRAS constitutively activate cell proliferation signaling in malignant neoplasms, such as leukemia and melanoma, and the clarification of comprehensive downstream genes of NRAS might lead to the control of cell-proliferative signals of NRAS-driven cancers. We previously established that NRAS expression and proliferative activity can be controlled with doxycycline and named as THP-1 B11. Using a CRISPR activation library on THP-1 B11 cells with the NRAS-off state, survival clones were harvested, and 21 candidate genes were identified. By inducting each candidate guide RNA with the CRISPR activation system, DOHH, HIST1H2AC, KRT32, and TAF6 showed higher cell-proliferative activity. The expression of DOHH, HIST1H2AC, and TAF6 was definitely upregulated with NRAS expression. Furthermore, MEK inhibitors resulted in the decreased expression of DOHH, HIST1H2AC, and TAF6 proteins in parental THP-1 cells. The knockdown of DOHH, HIST1H2AC, and TAF6 was found to reduce proliferation in THP-1 cells, indicating that they are involved in the downstream proliferation of NRAS. These molecules are expected to be new therapeutic targets for NRAS-mutant leukemia cells.

14.
Open J Blood Dis ; 11(4): 120-132, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34984108

RESUMO

Primary cardiac lymphoma (PCL) is a rare entity that comprises only 1-2% of all cardiac tumors. Due to their scarcity and variable clinical presentation, early diagnosis is challenging. In this series, three cases of PCL from a single institution are described, which highlight the spectrum of presenting features and emphasize common principles. In the first case, a 73-year-old male who presented with dyspnea was found to have a 12.1 cm mass in the right ventricle. Biopsy via cardiac catheterization revealed diffuse large B cell lymphoma (DLBCL). He was treated with chemoimmunotherapy and survived for two months. The second case describes a 55-year-old female who presented with chest pain. Imaging revealed a 3.1 cm right atrial mass and bilateral pleural effusions, with cytology from the latter demonstrating DLBCL. She was lost to follow up after three cycles of chemoimmunotherapy. In the last case, an 80-year-old female presented with weakness. A 4.0 cm mass was discovered in the right atrium and the patient expired shortly after admission. Autopsy confirmed the diagnosis of DLBCL. These case summaries are followed by a review of the clinical presentation, diagnostic approach, and treatment outcomes of PCL.

15.
Hematol Oncol Stem Cell Ther ; 14(3): 240-245, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33271117

RESUMO

Prognostic factors associated with clinical outcomes of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patients with central nervous system (CNS) involvement are unknown. We retrospectively studied the characteristics and outcomes of 66 (18 pediatric and 48 adult) patients with CNS leukemia with ALL (n = 41) or AML (n = 25). The median age of patients at diagnosis of CNS leukemia was 30 (range, 1-69) years. Nearly two-third patients had CNS involvement at the initial diagnosis of leukemia. Complete remission of CNS leukemia was attained in 58 (88%) patients, and probability of overall survival at 36 months after the diagnosis of CNS leukemia was 43% for the entire cohort. We identified that achieving remission of systemic leukemia and having CNS leukemia diagnosed and treated before allogeneic transplantation were the factors associated with CNS leukemia remission. Prognostic factors associated with better overall survival in patients with CNS leukemia included pediatric age, diagnosis of CNS leukemia before receiving allogenic transplantation, achieving clearance of systemic or CNS leukemia, receiving no cranial radiation in conjunction with intrathecal chemotherapy (IT), and receiving IT consolidation after achieving remission of CNS leukemia. Our findings show that patients with CNS leukemia are at considerable risk of mortality. Awareness of modifiable prognostic factors such as avoidance of cranial radiation whenever possible and use of IT consolidation can result in improved outcomes in subset of patients with CNS leukemia.


Assuntos
Neoplasias do Sistema Nervoso Central , Leucemia Linfocítica Crônica de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Transplante de Células-Tronco , Adolescente , Adulto , Fatores Etários , Idoso , Aloenxertos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/mortalidade , Neoplasias do Sistema Nervoso Central/terapia , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida
16.
Cancer Res ; 80(3): 458-470, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31784425

RESUMO

Standard chemotherapy for acute myeloid leukemia (AML) targets proliferative cells and efficiently induces complete remission; however, many patients relapse and die of their disease. Relapse is caused by leukemia stem cells (LSC), the cells with self-renewal capacity. Self-renewal and proliferation are separate functions in normal hematopoietic stem cells (HSC) in steady-state conditions. If these functions are also separate functions in LSCs, then antiproliferative therapies may fail to target self-renewal, allowing for relapse. We investigated whether proliferation and self-renewal are separate functions in LSCs as they often are in HSCs. Distinct transcriptional profiles within LSCs of Mll-AF9/NRASG12V murine AML were identified using single-cell RNA sequencing. Single-cell qPCR revealed that these genes were also differentially expressed in primary human LSCs and normal human HSPCs. A smaller subset of these genes was upregulated in LSCs relative to HSPCs; this subset of genes constitutes "LSC-specific" genes in human AML. To assess the differences between these profiles, we identified cell surface markers, CD69 and CD36, whose genes were differentially expressed between these profiles. In vivo mouse reconstitution assays resealed that only CD69High LSCs were capable of self-renewal and were poorly proliferative. In contrast, CD36High LSCs were unable to transplant leukemia but were highly proliferative. These data demonstrate that the transcriptional foundations of self-renewal and proliferation are distinct in LSCs as they often are in normal stem cells and suggest that therapeutic strategies that target self-renewal, in addition to proliferation, are critical to prevent relapse and improve survival in AML. SIGNIFICANCE: These findings define and functionally validate a self-renewal gene profile of leukemia stem cells at the single-cell level and demonstrate that self-renewal and proliferation are distinct in AML. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/458/F1.large.jpg.


Assuntos
Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Análise de Célula Única/métodos , Animais , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa