Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS Genet ; 18(2): e1010027, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35148321

RESUMO

Hybridization is increasingly recognized as an important evolutionary force. Novel genetic methods now enable us to address how the genomes of parental species are combined in hybrid lineages. However, we still do not know the relative importance of admixed proportions, genome architecture and local selection in shaping hybrid genomes. Here, we take advantage of the genetically divergent island populations of Italian sparrow on Crete, Corsica and Sicily to investigate the predictors of genomic variation within a hybrid taxon. We test if differentiation is affected by recombination rate, selection, or variation in ancestry proportions. We find that the relationship between recombination rate and differentiation is less pronounced within hybrid lineages than between the parent species, as expected if purging of minor parent ancestry in low recombination regions reduces the variation available for differentiation. In addition, we find that differentiation between islands is correlated with differences in signatures of selection in two out of three comparisons. Signatures of selection within islands are correlated across all islands, suggesting that shared selection may mould genomic differentiation. The best predictor of strong differentiation within islands is the degree of differentiation from house sparrow, and hence loci with Spanish sparrow ancestry may vary more freely. Jointly, this suggests that constraints and selection interact in shaping the genomic landscape of differentiation in this hybrid species.


Assuntos
Genoma , Pardais , Animais , Evolução Biológica , Fluxo Gênico , Genoma/genética , Genômica , Hibridização Genética , Seleção Genética , Pardais/genética
2.
Mol Ecol ; 31(15): 4067-4077, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35726533

RESUMO

Hybridization can result in novel allelic combinations which can impact the hybrid phenotype through changes in gene expression. While misexpression in F1 hybrids is well documented, how gene expression evolves in stabilized hybrid taxa remains an open question. As gene expression evolves in a stabilizing manner, break-up of co-evolved cis- and trans-regulatory elements could lead to transgressive patterns of gene expression in hybrids. Here, we address to what extent gonad gene expression has evolved in an established and stable homoploid hybrid, the Italian sparrow (Passer italiae). Through comparison of gene expression in gonads from individuals of the two parental species (i.e., house and Spanish sparrow) to that of Italian sparrows, we find evidence for strongly transgressive expression in male Italian sparrows-2530 genes (22% of testis genes tested for inheritance) exhibit expression patterns outside the range of both parent species. In contrast, Italian sparrow ovary expression was similar to that of one of the parent species, the house sparrow (Passer domesticus). Moreover, the Italian sparrow testis transcriptome is 26 times as diverged from those of the parent species as the parental transcriptomes are from each other, despite being genetically intermediate. This highlights the potential for regulation of gene expression to produce novel variation following hybridization. Genes involved in mitochondrial respiratory chain complexes and protein synthesis are enriched in the subset that is over-dominantly expressed in Italian sparrow testis, suggesting that selection on key functions has moulded the hybrid Italian sparrow transcriptome.


Assuntos
Pardais , Animais , Expressão Gênica , Hibridização Genética , Itália , Masculino , Pardais/genética , Testículo
3.
Mol Biol Evol ; 37(2): 488-506, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665510

RESUMO

Seminal fluid proteins (SFPs) mediate an array of postmating reproductive processes that influence fertilization and fertility. As such, it is widely held that SFPs may contribute to postmating, prezygotic reproductive barriers between closely related taxa. We investigated seminal fluid (SF) diversification in a recently diverged passerine species pair (Passer domesticus and Passer hispaniolensis) using a combination of proteomic and comparative evolutionary genomic approaches. First, we characterized and compared the SF proteome of the two species, revealing consistencies with known aspects of SFP biology and function in other taxa, including the presence and diversification of proteins involved in immunity and sperm maturation. Second, using whole-genome resequencing data, we assessed patterns of genomic differentiation between house and Spanish sparrows. These analyses detected divergent selection on immunity-related SF genes and positive selective sweeps in regions containing a number of SF genes that also exhibited protein abundance diversification between species. Finally, we analyzed the molecular evolution of SFPs across 11 passerine species and found a significantly higher rate of positive selection in SFPs compared with the rest of the genome, as well as significant enrichments for functional pathways related to immunity in the set of positively selected SF genes. Our results suggest that selection on immunity pathways is an important determinant of passerine SF composition and evolution. Assessing the role of immunity genes in speciation in other recently diverged taxa should be prioritized given the potential role for immunity-related proteins in reproductive incompatibilities in Passer sparrows.


Assuntos
Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Pardais/classificação , Espermatozoides/metabolismo , Animais , Evolução Molecular , Redes Reguladoras de Genes , Especiação Genética , Imunidade , Masculino , Filogenia , Proteômica , Pardais/genética , Pardais/metabolismo , Sequenciamento Completo do Genoma/métodos
4.
Proc Biol Sci ; 288(1962): 20211066, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34727712

RESUMO

Climate change influences population demography by altering patterns of gene flow and reproductive isolation. Direct mutation rates offer the possibility for accurate dating on the within-species level but are currently only available for a handful of vertebrate species. Here, we use the first directly estimated mutation rate in birds to study the evolutionary history of pied flycatchers (Ficedula hypoleuca). Using a combination of demographic inference and species distribution modelling, we show that all major population splits in this forest-dependent system occurred during periods of increased climate instability and rapid global temperature change. We show that the divergent Spanish subspecies originated during the Eemian-Weichselian transition 115-104 thousand years ago (kya), and not during the last glacial maximum (26.5-19 kya), as previously suggested. The magnitude and rates of climate change during the glacial-interglacial transitions that preceded population splits in pied flycatchers were similar to, or exceeded, those predicted to occur in the course of the current, human-induced climate crisis. As such, our results provide a timely reminder of the strong impact that episodes of climate instability and rapid temperature changes can have on species' evolutionary trajectories, with important implications for the natural world in the Anthropocene.


Assuntos
Mudança Climática , Aves Canoras , Animais , Biodiversidade , Florestas , Humanos , Aves Canoras/genética , Temperatura
5.
Mol Ecol ; 30(3): 791-809, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259111

RESUMO

Hybridization increases genetic variation, hence hybrid species may have greater evolutionary potential once their admixed genomes have stabilized and incompatibilities have been purged. Yet, little is known about how such hybrid lineages evolve at the genomic level following their formation, in particular their adaptive potential. Here we investigate how the Italian sparrow (Passer italiae), a homoploid hybrid species, has evolved and locally adapted to its variable environment. Using restriction site-associated DNA sequencing (RAD-seq) on several populations across the Italian peninsula, we evaluate how genomic constraints and novel genetic variation have influenced population divergence and adaptation. We show that population divergence within this hybrid species has evolved in response to climatic variation, suggesting ongoing local adaptation. As found previously in other nonhybrid species, climatic differences appear to increase population differentiation. We also report strong population divergence in a gene known to affect beak morphology. Most of the strongly divergent loci among Italian sparrow populations do not seem to be differentiated between its parent species, the house and Spanish sparrows. Unlike in the hybrid, population divergence within each of the parental taxa has occurred mostly at loci with high allele frequency difference between the parental species, suggesting that novel combinations of parental alleles in the hybrid have not necessarily enhanced its evolutionary potential. Rather, our study suggests that constraints linked to incompatibilities may have restricted the evolution of this admixed genome, both during and after hybrid species formation.


Assuntos
Genoma , Pardais , Animais , Genômica , Hibridização Genética , Itália , Pardais/genética
6.
Nat Rev Genet ; 15(3): 176-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24535286

RESUMO

Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.


Assuntos
Genômica , Biodiversidade , Modelos Genéticos
7.
Am Nat ; 192(1): 10-22, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897805

RESUMO

Hybridization is increasingly recognized as a potent evolutionary force. Although additive genetic variation and novel combinations of parental genes theoretically increase the potential for hybrid species to adapt, few empirical studies have investigated the adaptive potential within a hybrid species. Here, we address whether genomic contingencies, adaptation to climate, or diet best explain divergence in beak morphology using genomically diverged island populations of the homoploid hybrid Italian sparrow Passer italiae from Crete, Corsica, and Sicily. Populations vary significantly in beak morphology both between and within islands of origin. Temperature seasonality best explains population divergence in beak size. Interestingly, beak shape along all significant dimensions of variation was best explained by annual precipitation, genomic composition, and their interaction, suggesting a role for contingencies. Moreover, beak shape similarity to a parent species correlates with proportion of the genome inherited from that species, consistent with the presence of contingencies. In conclusion, adaptation to local conditions and genomic contingencies arising from putatively independent hybridization events jointly explain beak morphology in the Italian sparrow. Hence, hybridization may induce contingencies and restrict evolution in certain directions dependent on the genetic background.


Assuntos
Adaptação Biológica , Bico/anatomia & histologia , Pardais/genética , Animais , Clima , Dieta , Feminino , Genoma , Hibridização Genética , Masculino , Pardais/anatomia & histologia
8.
Genome Res ; 25(11): 1656-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355005

RESUMO

Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation ("differentiation islands") widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (d(xy) and relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation.


Assuntos
Especiação Genética , Passeriformes/classificação , Passeriformes/genética , Recombinação Genética , Seleção Genética , Animais , Feminino , Fluxo Gênico , Genética Populacional , Genoma , Genômica , Técnicas de Genotipagem , Masculino , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Análise de Sequência de DNA , Especificidade da Espécie
9.
Proc Biol Sci ; 285(1884)2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089626

RESUMO

House sparrows (Passer domesticus) are a hugely successful anthrodependent species; occurring on nearly every continent. Yet, despite their ubiquity and familiarity to humans, surprisingly little is known about their origins. We sought to investigate the evolutionary history of the house sparrow and identify the processes involved in its transition to a human-commensal niche. We used a whole genome resequencing dataset of 120 individuals from three Eurasian species, including three populations of Bactrianus sparrows, a non-commensal, divergent house sparrow lineage occurring in the Near East. Coalescent modelling supports a split between house and Bactrianus sparrow 11 Kya and an expansion in the house sparrow at 6 Kya, consistent with the spread of agriculture following the Neolithic revolution. Commensal house sparrows therefore likely moved into Europe with the spread of agriculture following this period. Using the Bactrianus sparrow as a proxy for a pre-commensal, ancestral house population, we performed a comparative genome scan to identify genes potentially involved with adaptation to an anthropogenic niche. We identified potential signatures of recent, positive selection in the genome of the commensal house sparrow that are absent in Bactrianus populations. The strongest selected region encompasses two major candidate genes; COL11A-which regulates craniofacial and skull development and AMY2A, part of the amylase gene family which has previously been linked to adaptation to high-starch diets in humans and dogs. Our work examines human-commensalism in an evolutionary framework, identifies genomic regions likely involved in rapid adaptation to this new niche and ties the evolution of this species to the development of modern human civilization.


Assuntos
Adaptação Biológica , Genoma/fisiologia , Pardais/fisiologia , Simbiose/genética , Animais , Evolução Molecular , Modelos Genéticos , Seleção Genética , Pardais/genética
10.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446700

RESUMO

Secondary contact between closely related species can have genetic consequences. Competition for essential resources may lead to divergence in heritable traits that reduces interspecific competition leading to increased rate of genetic divergence. Conversely, hybridization and backcrossing can lead to genetic convergence. Here, we study a population of a hybrid species, the Italian sparrow (Passer italiae), before and after it came into secondary contact with one of its parent species, the Spanish sparrow (P. hispaniolensis), in 2013. We demonstrate strong consequences of interspecific competition: Italian sparrows were kept away from a popular feeding site by its parent species, resulting in poorer body condition and a significant drop in population size. Although no significant morphological change could be detected, after only 3 years of sympatry, the Italian sparrows had diverged significantly from the Spanish sparrows across a set of 81 protein-coding genes. These temporal genetic changes are mirrored by genetic divergence observed in older sympatric Italian sparrow populations within the same area of contact. Compared with microallopatric birds, sympatric ones are genetically more diverged from Spanish sparrows. Six significant outlier genes in the temporal and spatial comparison (i.e. showing the greatest displacement) have all been found to be associated with learning and neural development in other bird species.


Assuntos
Genética Populacional , Hibridização Genética , Herança Multifatorial , Pardais/genética , Animais , Itália , Simpatria
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa