Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 45(11): e2300035, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694689

RESUMO

Ascorbic acid is a redox regulator in many physiological processes. Besides its antioxidant activity, many intriguing functions of ascorbic acid in the expression of immunoregulatory genes have been suggested. Ascorbic acid acts as a co-factor for the Fe+2 -containing α-ketoglutarate-dependent Jumonji-C domain-containing histone demethylases (JHDM) and Ten eleven translocation (TET) methylcytosine dioxygenasemediated epigenetic modulation. By influencing JHDM and TET, ascorbic acid facilitates the differentiation of double negative (CD4- CD8- ) T cells to double positive (CD4+ CD8+ ) T cells and of T-helper cells to different effector subsets. Ascorbic acid modulates plasma cell differentiation and promotes early differentiation of hematopoietic stem cells (HSCs) to NK cells. These findings indicate that ascorbic acid plays a significant role in regulating both innate and adaptive immune cells, opening up new research areas in Immunonutrition. Being a water-soluble vitamin and a safe micro-nutrient, ascorbic acid can be used as an adjunct therapy for many disorders of the immune system.


Assuntos
Ácido Ascórbico , Dioxigenases , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Dioxigenases/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Imunidade , 5-Metilcitosina , Metilação de DNA
2.
Eur J Immunol ; 53(7): e2350430, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173132

RESUMO

Ras GTPases, well characterized for their role in oncogenesis, are the cells' molecular switches that signal to maintain immune homeostasis through cellular development, proliferation, differentiation, survival, and apoptosis. In the immune system, T cells are the central players that cause autoimmunity if dysregulated. Antigen-specific T-cell receptor (TCR) stimulation activates Ras-isoforms, which exhibit isoform-specific activator and effector requirements, functional specificities, and a selective role in T-cell development and differentiation. Recent studies show the role of Ras in T-cell-mediated autoimmune diseases; however, there is a scarcity of knowledge about the role of Ras in T-cell development and differentiation. To date, limited studies have demonstrated Ras activation in response to positive and negative selection signals and Ras isoform-specific signaling, including subcellular signaling, in immune cells. The knowledge of isoform-specific functions of Ras in T cells is essential, but still inadequate to develop the T-cell-targeted Ras isoform-specific treatment strategies for the diseases caused by altered Ras-isoform expression and activation in T cells. In this review, we discuss the role of Ras in T-cell development and differentiation, critically analyzing the isoform-specific functions.


Assuntos
Doenças Autoimunes , Linfócitos T , Humanos , Transdução de Sinais , Diferenciação Celular , Receptores de Antígenos de Linfócitos T , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
PLoS Pathog ; 18(8): e1010696, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925884

RESUMO

As effector innate immune cells and as a host to the protozoan parasite Leishmania, macrophages play a dual role in antileishmanial immunoregulation. The 2 key players in this immunoregulation are the macrophage-expressed microRNAs (miRNAs) and the macrophage-secreted cytokines. miRNAs, as small noncoding RNAs, play vital roles in macrophage functions including cytokines and chemokines production. In the reverse direction, Leishmania-regulated cytokines alter miRNAs expression to regulate the antileishmanial functions of macrophages. The miRNA patterns vary with the time and stage of infection. The cytokine-regulated macrophage miRNAs not only help parasite elimination or persistence but also regulate cytokine production from macrophages. Based on these observations, we propose a novel immunoregulatory framework as a scientific rationale for antileishmanial therapy.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , MicroRNAs , Parasitos , Animais , Antiprotozoários/metabolismo , Citocinas/metabolismo , Humanos , Leishmania/metabolismo , Leishmaniose/metabolismo , Macrófagos , MicroRNAs/metabolismo , Parasitos/metabolismo
4.
Cytokine ; 174: 156461, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065046

RESUMO

Establishing a balance between Th1 and Th2 subsets and M1- and M2-type macrophages is essential for the control of Leishmania infection. The suppressors of cytokine secretion (SOCS) proteins, particularly SOCS1 and SOCS3, play a significant role in regulating cytokine-triggered signaling pathways, thereby impacting the macrophage-and effector T-cell mediated antileishmanial immune response. In addition to the pro-inflammatory cytokines, Leishmania-derived lipophosphoglycan (LPG) and CpG-DNA interact with TLR2 and TLR9 to trigger SOCS expression. The aberrant levels of SOCS1 and SOCS3 expression in Leishmania-infected macrophages impair macrophage-T-cell interaction perturbing the balance in macrophage subsets polarization. This hinders macrophage apoptosis and macrophage-mediated leishmanicidal activity, both support the establishment of infection and parasite replication. Furthermore, aberrant SOCS3 levels in T-cells disrupt Th1 differentiation and aid in parasite replication, lesion development, and pathological immune responses. Strategically, selective modulation of SOCS expression and function in immune effector cells may reduce parasite survival and prevent disease progression.


Assuntos
Leishmania , Proteínas Supressoras da Sinalização de Citocina , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Citocinas/metabolismo , Imunidade
5.
Cytokine ; 179: 156627, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38703436

RESUMO

Leishmaniasis, a major globally re-emerging neglected tropical disease, has a restricted repertoire of chemotherapeutic options due to a narrow therapeutic index, drug resistance, or patient non-compliance due to toxicity. The disease is caused by the parasite Leishmania that resides in two different forms in two different environments: as sessile intracellular amastigotes within mammalian macrophages and as motile promastigotes in sandfly gut. As mitogen-activated protein kinases (MAPKs) play important roles in cellular differentiation and survival, we studied the expression of Leishmania donovani MAPKs (LdMAPKs). The homology studies by multiple sequence alignment show that excepting LdMAPK1 and LdMAPK2, all thirteen other LdMAPKs share homology with human ERK and p38 isoforms. Expression of LdMAPK4 and LdMAPK5 is less in avirulent promastigotes and amastigotes. Compared to miltefosine-sensitive L. donovani parasites, miltefosine-resistant parasites have higher LdMAPK1, LdMAPK3-5, LdMAPK7-11, LdMAPK13, and LdMAPK14 expression. IL-4-treatment of macrophages down-regulated LdMAPK11, in virulent amastigotes whereas up-regulated LdMAPK5, but down-regulated LdMAPK6, LdMAPK12-15, expression in avirulent amastigotes. IL-4 up-regulated LdMAPK1 expression in both virulent and avirulent amastigotes. IFN-γ-treatment down-regulated LdMAPK6, LdMAPK13, and LdMAPK15 in avirulent amastigotes but up-regulated in virulent amastigotes. This complex profile of LdMAPKs expression among virulent and avirulent parasites, drug-resistant parasites, and in amastigotes within IL-4 or IFN-γ-treated macrophages suggests that LdMAPKs are differentially controlled at the host-parasite interface regulating parasite survival and differentiation, and in the course of IL-4 or IFN-γ dominated immune response.


Assuntos
Interações Hospedeiro-Parasita , Leishmania donovani , Macrófagos , Proteínas Quinases Ativadas por Mitógeno , Leishmania donovani/enzimologia , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Camundongos , Macrófagos/parasitologia , Macrófagos/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Interferon gama/metabolismo , Resistência a Medicamentos
6.
Cytokine ; 174: 156475, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134556

RESUMO

Leishmania donovani causes the potentially fatal disease visceral leishmaniasis for which neither a vaccine nor an adjuvant for human use exists. Although interleukin-7 (IL-7) is implicated in CD4+ T-cell response stabilization, its anti-leishmanial function is uncertain. Therefore, we examined whether IL-7 would potentiate the efficacy of Leishmania major-expressed MAPK10 (LmjMAPK10; M10)-elicited anti-leishmanial host-protective response. We observed that aligning with IL-7R expression, IL-7 increased IFN-γ-secreting TH1 cell but reduced IL-4-producing TH2 cells and production of IL-10 and TGF-ß effectuating anti-leishmanial functions in susceptible BALB/c mouse-derived macrophages. Co-culturing IL-7-pre-treated L. donovani-infected macrophages with L. donovani-infected BALB/c-derived T cells induced IFN-γ-dominated TH1 type anti-leishmanial function. IL-7 treatment of L. donovani-infected BALB/c mice significantly reduced splenic and hepatic parasite loads. Co-culturing CD4+ T cells from IL to 7-treated mice with L. donovani-infected macrophages reduced amastigote numbers suggesting IL-7-elicited host-protective effector T cells. Priming BALB/c with M10 + IL-7 reduced the splenic parasite burden more effectively than that was observed in M10-primed mice. An enhanced protection against L. donovani infection was accompanied by enhanced IL-12 and IFN-γ, but suppressed IL-10 and IL-4, response and host-protective TH1 and memory T cells. These results indicate IL-7-induced leishmanial antigen-specific memory T cell response that protects a susceptible host against L. donovani infection.


Assuntos
Adjuvantes de Vacinas , Interleucina-7 , Leishmania donovani , Vacinas contra Leishmaniose , Leishmaniose Visceral , Proteína Quinase 10 Ativada por Mitógeno , Vacinas contra Leishmaniose/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Leishmania donovani/imunologia , Leishmaniose Visceral/prevenção & controle , Proteína Quinase 10 Ativada por Mitógeno/imunologia , Receptores de Interleucina-7/metabolismo , Interleucina-7/administração & dosagem , Interferon gama/metabolismo , Células Th1/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Leishmania major/imunologia , Técnicas de Cocultura , Células T de Memória/imunologia , Baço/parasitologia , Fígado/parasitologia , Apresentação de Antígeno
7.
Cytotherapy ; 26(8): 797-805, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38625068

RESUMO

Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Neutrófilos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neutrófilos/metabolismo , Neutrófilos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/metabolismo
8.
J Proteome Res ; 22(7): 2256-2270, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37339249

RESUMO

Leishmania donovani infection of macrophages drives profound changes in the metabolism of both the host macrophage and the parasite, which undergoes different phases of development culminating in replication and propagation. However, the dynamics of this parasite-macrophage cometabolome are poorly understood. In this study, a multiplatform metabolomics pipeline combining untargeted, high-resolution CE-TOF/MS and LC-QTOF/MS with targeted LC-QqQ/MS was followed to characterize the metabolome alterations induced in L. donovani-infected human monocyte-derived macrophages from different donors at 12, 36, and 72 h post-infection. The set of alterations known to occur during Leishmania infection of macrophages, substantially expanded in this investigation, characterized the dynamics of the glycerophospholipid, sphingolipid, purine, pentose phosphate, glycolytic, TCA, and amino acid metabolism. Our results showed that only citrulline, arginine, and glutamine exhibited constant trends across all studied infection time points, while most metabolite alterations underwent a partial recovery during amastigote maturation. We determined a major metabolite response pointing to an early induction of sphingomyelinase and phospholipase activities and correlated with amino acid depletion. These data represent a comprehensive overview of the metabolome alterations occurring during promastigote-to-amastigote differentiation and maturation of L. donovani inside macrophages that contributes to our understanding of the relationship between L. donovani pathogenesis and metabolic dysregulation.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmania donovani/metabolismo , Macrófagos/metabolismo , Metaboloma , Metabolômica , Aminoácidos/metabolismo , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia
9.
Immunology ; 170(4): 510-526, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37635289

RESUMO

Under perturbing conditions such as infection with Leishmania, a protozoan parasite living within the phagosomes in mammalian macrophages, cellular and organellar structures, and metabolism are dynamically regulated for neutralizing the pressure of parasitism. However, how modulations of the host cell metabolic pathways support Leishmania infection remains unknown. Herein, we report that lipid accumulation heightens the susceptibility of mice to L. donovani infection and promotes resistance to first-line anti-leishmanial drugs. Despite being pro-inflammatory, the in vitro generated uninfected lipid-laden macrophages (LLMs) or adipose-tissue macrophages (ATMs) display lower levels of reactive oxygen and nitrogen species. Upon infection, LLMs secrete higher IL-10 and lower IL-12p70 cytokines, inhibiting CD4+ T cell activation and Th1 response suggesting a key modulatory role for intramacrophage lipid accumulation in anti-leishmanial host defence. We, therefore, examined this causal relationship between lipids and immunomodulation using an in vivo high-fat diet (HFD) mouse model. HFD increased the susceptibility to L. donovani infection accompanied by a defective CD4+ Th1 and CD8+ T cell response. The white adipose tissue of HFD mice displays increased susceptibility to L. donovani infection with the preferential infection of F4/80+ CD11b+ CD11c+ macrophages with higher levels of neutral lipids reserve. The HFD increased resistance to a first-line anti-leishmanial drug associated with a defective adaptive immune response. These data demonstrate that the accumulation of neutral lipids contributes to susceptibility to visceral leishmaniasis hindering host-protective immune response and reducing the efficacy of antiparasitic drug therapies.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Camundongos , Leishmaniose Visceral/tratamento farmacológico , Imunidade Adaptativa , Linfócitos T CD8-Positivos , Lipídeos , Camundongos Endogâmicos BALB C , Mamíferos
10.
PLoS Pathog ; 17(12): e1010059, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898656

RESUMO

Neurotropic mouse hepatitis virus (MHV-A59/RSA59) infection in mice induces acute neuroinflammation due to direct neural cell dystrophy, which proceeds with demyelination with or without axonal loss, the pathological hallmarks of human neurological disease, Multiple sclerosis (MS). Recent studies in the RSA59-induced neuroinflammation model of MS showed a protective role of CNS-infiltrating CD4+ T cells compared to their pathogenic role in the autoimmune model. The current study further investigated the molecular nexus between CD4+ T cell-expressed CD40Ligand and microglia/macrophage-expressed CD40 using CD40L-/- mice. Results demonstrate CD40L expression in the CNS is modulated upon RSA59 infection. We show evidence that CD40L-/- mice are more susceptible to RSA59 induced disease due to reduced microglia/macrophage activation and significantly dampened effector CD4+ T recruitment to the CNS on day 10 p.i. Additionally, CD40L-/- mice exhibited severe demyelination mediated by phagocytic microglia/macrophages, axonal loss, and persistent poliomyelitis during chronic infection, indicating CD40-CD40L as host-protective against RSA59-induced demyelination. This suggests a novel target in designing prophylaxis for virus-induced demyelination and axonal degeneration, in contrast to immunosuppression which holds only for autoimmune mechanisms of inflammatory demyelination.


Assuntos
Ligante de CD40/imunologia , Infecções por Coronavirus/imunologia , Doença Autoimune do Sistema Nervoso Experimental/imunologia , Doença Autoimune do Sistema Nervoso Experimental/virologia , Animais , Linfócitos T CD4-Positivos , Infecções por Coronavirus/patologia , Camundongos , Vírus da Hepatite Murina , Doença Autoimune do Sistema Nervoso Experimental/patologia
11.
Cytokine ; 161: 156061, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252436

RESUMO

The loss of control of cell proliferation, apoptosis regulation and contact inhibition leads to tumor development. While benign tumors are restricted to their primary space, i.e. where these tumors first originate, the metastatic tumors not only disseminate- facilitated by hypoxia-driven neovascularization- to distant secondary sites but also show substantial changes in metabolism, tissue architectures, gene expression profiles and immune phenotypes. All these alterations result in radio-, chemo- and immune-resistance rendering these metastatic tumor cells refractory to therapy. Since the beginning of the transformation, these factors- which influence each other- are incorporated to the developing and metastasizing tumor. As a result, the complexities in the heterogeneity of tumor progressively increase. This space-time function in the heterogeneity of tumors is generated by various conditions and factors at the genetic as well as microenvironmental levels, for example, endogenous retroviruses, methylation and epigenetic dysregulation that may be etiology-specific, cancer associated inflammation, remodeling of the extracellular matrix and mesenchymal cell shifted functions. On the one hand, these factors may cause de-differentiation of the tumor cells leading to cancer stem cells that contribute to radio-, chemo- and immune-resistance and recurrence of tumors. On the other hand, they may also enhance the heterogeneity under specific microenvironment-driven proliferation. In this editorial, we intend to underline the importance of heterogeneity in cancer progress, its evaluation and its use in correlation with the tumor evolution in a specific patient as a field of research for achieving precise patient-tailored treatments and amelioration of diagnostic (monitoring) tools and prognostic capacity.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neovascularização Patológica , Proliferação de Células/genética , Células-Tronco Neoplásicas , Matriz Extracelular , Microambiente Tumoral/genética
12.
Cytokine ; 161: 156073, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326535

RESUMO

BACKGROUND: Interleukin-6 (IL-6) has been implicated in various malignancies, including ovarian cancer. However, mixed results have been observed regarding IL-6 levels in different ovarian conditions. This meta-analysis was performed to determine IL-6 levels in the peritoneal fluid and peripheral blood among patients with various adnexal masses. METHODS: Most popular English databases were searched using a predefined search formula. All studies comparing IL-6 levels in plasma, serum or peritoneal fluid of patients with benign tumors, ovarian neoplasms, and healthy controls were included based on inclusion and exclusion criteria. RESULTS: 5953 patients from 22 primary publications raging from 1994 to 2021 were included in the meta-analyses. A pooled IL-6 Mean Difference (MD) of 41 pg/mL for malignant tumors compared to benign ones, with a Confidence Interval (CI) between 19.8 and 62.2, a Z-score of 3.79, and statistical significance with a p = 0.0002 was observed. Pooled results for healthy versus benign ovarian conditions showed an MD of 5.45 pg/mL for serum or plasma IL-6 measurements in favor of benign tumors (CI:0.66-10.25, Z = 2.23 and p = 0.03). The analysis showed an MD for IL-6 levels of 19.59 pg/mL for healthy controls versus malignant ovarian tumors. Peritoneal fluid measurements regarding IL-6's levels showed no significant difference between benign or malignant masses. DISCUSSION/CONCLUSIONS: Higher levels of plasma or serum IL-6 in ovarian neoplasia patients compared to benign conditions or healthy controls identify IL-6 as a discerning factor between benign or malignant ovarian tumors and a potential biomarker for ovarian malignancy.


Assuntos
Interleucina-6 , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Líquido Ascítico/química , Líquido Ascítico/patologia , Biomarcadores
13.
Cytokine ; 171: 156373, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776719

RESUMO

Leishmania major and L. donovani cause cutaneous leishmaniasis and visceral leishmaniasis, respectively. Available chemotherapies suffer from toxicity, drug-resistance or high cost of production prompting the need for the discovery of new anti-leishmanials. Here, we test a novel aminosteriodal compound- 3-alpha-amino-cholestane [3AC] - that shows selective inhibition of SHIP1, an inositol-5'-phosphate-specific phosphatase with potent effects on the immune system. We report that 3AC-sensitive SHIP1 expression increases in Leishmania-infected macrophages. Treatment of BALB/c mice, a Leishmania-susceptible host, with 3AC increased anti-leishmanial, but reduced pro-leishmanial, cytokines' production and reduced the parasite load in both L. major and L. donovani infections. These findings implicate SHIPi as a potential novel immunostimulant with anti-leishmanial function.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Camundongos , Leishmaniose Visceral/tratamento farmacológico , Camundongos Endogâmicos BALB C
14.
Cytokine ; 169: 156301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515982

RESUMO

Leishmania infection of macrophages results in altered Ras isoforms expression and Toll-like receptor-2 (TLR2) expression and functions. Therefore, we examined whether TLR2 would selectively alter Ras isoforms' expression in macrophages. We observed that TLR2 ligands- Pam3CSK4, peptidoglycan (PGN), and FSL- selectively modulated the expression of Ras isoforms in BALB/c-derived elicited macrophages. Lentivirally-expressed TLR1-shRNA significantly reversed this Ras isoforms expression profile. TLR2-deficient L. major-infected macrophages and the lymph node cells from the L. major-infected mice showed similarly reversed Ras isoforms expression. Transfection of the macrophages with the siRNAs for the adaptors- Myeloid Differentiation factor 88 (MyD88) and Toll-Interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP)- or Interleukin-1 Receptor-Associated Kinases (IRAKs)- IRAK1 and IRAK4- significantly inhibited the L. major-induced down-regulation of K-Ras, and up-regulation of N-Ras and H-Ras, expression. The TLR1/TLR2-ligand Pam3CSK4 increased IL-10 and TGF-ß expression in macrophages. Pam3CSK4 upregulated N-Ras and H-Ras, but down-regulated K-Ras, expression in C57BL/6 wild-type, but not in IL-10-deficient, macrophages. IL-10 or TGF-ß signaling inhibition selectively regulated Ras isoforms expression. These observations indicate the specificity of the TLR2 regulation of Ras isoforms and their selective modulation by MyD88, TIRAP, and IRAKs, but not IL-10 or TGF-ß, signaling.


Assuntos
Leishmania major , Leishmaniose Cutânea , Macrófagos , Receptor 2 Toll-Like , Proteínas ras , Leishmaniose Cutânea/metabolismo , Animais , Camundongos , Camundongos Endogâmicos BALB C , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Macrófagos/metabolismo , Ligantes , Proteínas ras/metabolismo , Peptidoglicano/metabolismo , Quinases Associadas a Receptores de Interleucina-1 , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Regulação para Baixo
15.
Virol J ; 20(1): 51, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966345

RESUMO

BACKGROUND: Multiple sclerosis (MS) is characterized by neuroinflammation and demyelination orchestrated by activated neuroglial cells, CNS infiltrating leukocytes, and their reciprocal interactions through inflammatory signals. An inflammatory stimulus triggers inducible nitric oxide synthase (NOS2), a pro-inflammatory marker of microglia/macrophages (MG/Mφ) to catalyze sustained nitric oxide production. NOS2 during neuroinflammation, has been associated with MS disease pathology; however, studies dissecting its role in demyelination are limited. We studied the role of NOS2 in a recombinant ß-coronavirus-MHV-RSA59 induced neuroinflammation, an experimental animal model mimicking the pathological hallmarks of MS: neuroinflammatory demyelination and axonal degeneration. OBJECTIVE: Understanding the role of NOS2 in murine-ß-coronavirus-MHV-RSA59 demyelination. METHODS: Brain and spinal cords from mock and RSA59 infected 4-5-week-old MHV-free C57BL/6 mice (WT) and NOS2-/- mice were harvested at different disease phases post infection (p.i.) (day 5/6-acute, day 9/10-acute-adaptive and day 30-chronic phase) and compared for pathological outcomes. RESULTS: NOS2 was upregulated at the acute phase of RSA59-induced disease in WT mice and its deficiency resulted in severe disease and reduced survival at the acute-adaptive transition phase. Low survival in NOS2-/- mice was attributed to (i) high neuroinflammation resulting from increased accumulation of macrophages and neutrophils and (ii) Iba1 + phagocytic MG/Mφ mediated-early demyelination as observed at this phase. The phagocytic phenotype of CNS MG/Mφ was confirmed by significantly higher mRNA transcripts of phagocyte markers-CD206, TREM2, and Arg1 and double immunolabelling of Iba1 with MBP and PLP. Further, NOS2 deficiency led to exacerbated demyelination at the chronic phase as well. CONCLUSION: Taken together the results imply that the immune system failed to control the disease progression in the absence of NOS2. Thus, our observations highlight a protective role of NOS2 in murine-ß-coronavirus induced demyelination.


Assuntos
Infecções por Coronavirus , Doenças Desmielinizantes , Vírus da Hepatite Murina , Óxido Nítrico Sintase Tipo II , Animais , Camundongos , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/metabolismo , Doenças Neuroinflamatórias , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Imunológicos , Infecções por Coronavirus/patologia
16.
Exp Parasitol ; 245: 108441, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572088

RESUMO

Leishmaniasis is an enigmatic disease that has very restricted options for chemotherapy and none for prophylaxis. As a result, deriving therapeutic principles for curing the disease has been a major objective in Leishmania research for a long time. Leishmania is a protozoan parasite that lives within macrophages by subverting or switching cell signaling to the pathways that ensure its intracellular survival. Therefore, three groups of molecules aimed at blocking or eliminating the parasite, at least, in principle, include blockers of macrophage receptor- Leishmania ligand interaction, macrophage-activating small molecules, peptides and cytokines, and signaling inhibitors or activators. Macrophages also act as an antigen-presenting cell, presenting antigen to the antigen-specific T cells to induce activation and differentiation of the effector T cell subsets that either execute or suppress anti-leishmanial functions. Three groups of therapeutic principles targeting this sphere of Leishmania-macrophage interaction include antibodies that block pro-leishmanial response of T cells, ligands that activate anti-leishmanial T cells and the antigens for therapeutic vaccines. Besides these, prophylactic vaccines have been in clinical trials but none has succeeded so far. Herein, we have attempted to encompass all these principles and compose a comprehensive review to analyze the feasibility and adoptability of different therapeutics for leishmaniasis.


Assuntos
Leishmania , Leishmaniose , Vacinas , Humanos , Leishmaniose/tratamento farmacológico , Citocinas , Linfócitos T
17.
Exp Parasitol ; 255: 108645, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949424

RESUMO

T-cells play a central role in cell-mediated immunity. While activation of T-cells is major histocompatibility-restricted, the Toll-like receptors (TLRs)- a family of proteins that recognize conserved molecular patterns present on the pathogens-are not well-studied for their expression and function in T-cells. As any association of TLR expression profiles with an effector T-cell subset is unknown, we analyze BALB/c mice-derived CD4+ and CD8+ T-cells' TLR expression profiles. We report: CD4+t-bet+ T-cells are frequent in TLR2LowTLR3HighTLR4Low subpopulation, CD4+GATA3+ T-cells are frequent within the cells with intermediate expression of TLR2, TLR3, TLR4 and TLR11, CD4+FoxP3+ T-cells in TLR2HighTLR3High cells whereas CD4+RORγt + T-cells are frequent in TLR2LowTLR3LowTLR4LowTLR11Low cells. CD4+ effector T-cell subsets may therefore show association with TLRs- TLR3, in particular-expression. In Leishmania donovani infection in BALB/c mice, TLR3 expression on both CD4+ and CD8+ T-cells is reduced. Poly-I:C, a TLR3 ligand, do not have any distinctive effects on the CD4+ effector T-cell subsets. These data suggest that TLRs on T-cells may not function as a primary receptor that controls T-cell function but their distinctive expression profiles on different T-cell subsets suggest plausible immunomodulatory role.


Assuntos
Leishmania donovani , Receptor 2 Toll-Like , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Leishmania donovani/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Receptores Toll-Like/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos
18.
Biol Chem ; 403(2): 211-229, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34882360

RESUMO

Bone metabolism is essential for maintaining bone mineral density and bone strength through a balance between bone formation and bone resorption. Bone formation is associated with osteoblast activity whereas bone resorption is linked to osteoclast differentiation. Osteoblast progenitors give rise to the formation of mature osteoblasts whereas monocytes are the precursors for multi-nucleated osteoclasts. Chronic inflammation, auto-inflammation, hormonal changes or adiposity have the potential to disturb the balance between bone formation and bone loss. Several plant-derived components are described to modulate bone metabolism and alleviate osteoporosis by enhancing bone formation and inhibiting bone resorption. The plant-derived naphthoquinone plumbagin is a bioactive compound that can be isolated from the roots of the Plumbago genus. It has been used as traditional medicine for treating infectious diseases, rheumatoid arthritis and dermatological diseases. Reportedly, plumbagin exerts its biological activities primarily through induction of reactive oxygen species and triggers osteoblast-mediated bone formation. It is plausible that plumbagin's reciprocal actions - inhibiting or inducing death in osteoclasts but promoting survival or growth of osteoblasts - are a function of the synergy with bone-metabolizing hormones calcitonin, Parathormone and vitamin D. Herein, we develop a framework for plausible molecular modus operandi of plumbagin in bone metabolism.


Assuntos
Reabsorção Óssea , Naftoquinonas , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Diferenciação Celular , Humanos , Inflamação/metabolismo , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Compostos Fitoquímicos/metabolismo
19.
PLoS Pathog ; 16(10): e1009017, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33052966

RESUMO

TRIM5α is a key cross-species barrier to retroviral infection, with certain TRIM5 alleles conferring increased risk of HIV-1 infection in humans. TRIM5α is best known as a species-specific restriction factor that directly inhibits the viral life cycle. Additionally, it is also a pattern-recognition receptor (PRR) that activates inflammatory signaling. How TRIM5α carries out its multi-faceted actions in antiviral defense remains incompletely understood. Here, we show that proteins required for autophagy, a cellular self-digestion pathway, play an important role in TRIM5α's function as a PRR. Genetic depletion of proteins involved in all stages of the autophagy pathway prevented TRIM5α-driven expression of NF-κB and AP1 responsive genes. One of these genes is the preeminent antiviral cytokine interferon ß (IFN-ß), whose TRIM5-dependent expression was lost in cells lacking the autophagy proteins ATG7, BECN1, and ULK1. Moreover, we found that the ability of TRIM5α to stimulate IFN-ß expression in response to recognition of a TRIM5α-restricted HIV-1 capsid mutant (P90A) was abrogated in cells lacking autophagy factors. Stimulation of human macrophage-like cells with the P90A virus protected them against subsequent infection with an otherwise resistant wild type HIV-1 in a manner requiring TRIM5α, BECN1, and ULK1. Mechanistically, TRIM5α was attenuated in its ability to activate the kinase TAK1 in autophagy deficient cells, and both BECN1 and ATG7 contributed to the assembly of TRIM5α-TAK1 complexes. These data demonstrate a non-canonical role for the autophagy machinery in assembling antiviral signaling complexes and in establishing a TRIM5α-dependent antiviral state.


Assuntos
Autofagia/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Restrição Antivirais , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteína Beclina-1 , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Células HEK293 , Infecções por HIV/virologia , HIV-1/genética , Células HeLa , Humanos , Interferon beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , NF-kappa B/metabolismo , Peptídeos/metabolismo , Receptores de Reconhecimento de Padrão/fisiologia , Infecções por Retroviridae/virologia , Especificidade da Espécie , Células THP-1 , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
20.
Cytokine ; 157: 155956, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785668

RESUMO

IFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination. As befits the principle of parasitism, the impaired IFN-γ responsiveness in macrophages ensures Leishmania survival. IFN-γ responsiveness is a function of integrated molecular events at multiple levels in the cells that express IFN-γ receptors. In Leishmania-infected macrophages, reduced IFN-γRα expression, impaired IFN-γRα and IFN-γRß hetero-dimerization due to altered membrane lipid composition, reduced JAK-1 and STAT-1 phosphorylation but increased STAT-1 degradation and impaired ISGs induction collectively determine the IFN-γ responsiveness and the efficacy of IFN-γ induced antileishmanial function of macrophages. Therefore, parasite load is not only decided by the levels of IFN-γ produced but also by the IFN-γ responsiveness. Indeed, in Leishmania-infected patients, IFN-γ is produced but IFN-γ signalling is downregulated. However, the molecular mechanisms of IFN-γ responsiveness remain unclear. Therefore, we review the current understanding of IFN-γ responsiveness of Leishmania-infected macrophages.


Assuntos
Leishmania , Humanos , Interferon gama , Macrófagos/metabolismo , Receptores de Interferon , Transdução de Sinais , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa