Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(7): 755-765, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915298

RESUMO

The cytokines IL-17A and IL-17F have 50% amino-acid identity and bind the same receptor; however, their functional differences have remained obscure. Here we found that Il17f-/- mice resisted chemically induced colitis, but Il17a-/- mice did not, and that Il17f-/- CD45RBhiCD4+ T cells induced milder colitis in lymphocyte-deficient Rag2-/- mice, accompanied by an increase in intestinal regulatory T cells (Treg cells). Clostridium cluster XIVa in colonic microbiota capable of inducing Treg cells was increased in both Il17f-/- mice and mice given transfer Il17f-/- T cells, due to decreased expression of a group of antimicrobial proteins. There was substantial production of IL-17F, but not of IL-17A, not only by naive T cells but also by various colon-resident cells under physiological conditions. Furthermore, antibody to IL-17F suppressed the development of colitis, but antibody to IL-17A did not. These observations suggest that IL-17F is an effective target for the treatment of colitis.


Assuntos
Colite/imunologia , Microbioma Gastrointestinal , Interleucina-17/antagonistas & inibidores , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Clostridium/crescimento & desenvolvimento , Clostridium/isolamento & purificação , Colite/tratamento farmacológico , Interleucina-17/genética , Interleucina-17/fisiologia , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipases A2/biossíntese , Fosfolipases A2/genética , Prevotella/isolamento & purificação , Ribonuclease Pancreático/biossíntese , Ribonuclease Pancreático/genética , beta-Defensinas/biossíntese
2.
PLoS Pathog ; 20(1): e1011878, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38170734

RESUMO

Although chitin in fungal cell walls is associated with allergic airway inflammation, the precise mechanism underlying this association has yet to be elucidated. Here, we investigated the involvement of fungal chitin-binding protein and chitin in allergic airway inflammation. Recombinant Aspergillus fumigatus LdpA (rLdpA) expressed in Pichia pastoris was shown to be an O-linked glycoprotein containing terminal α-mannose residues recognized by the host C-type lectin receptor, Dectin-2. Chitin particles were shown to induce acute neutrophilic airway inflammation mediated release of interleukin-1α (IL-1α) associated with cell death. Furthermore, rLdpA-Dectin-2 interaction was shown to promote phagocytosis of rLdpA-chitin complex and activation of mouse bone marrow-derived dendritic cells (BMDCs). Moreover, we showed that rLdpA potently induced T helper 2 (Th2)-driven allergic airway inflammation synergistically with chitin, and Dectin-2 deficiency attenuated the rLdpA-chitin complex-induced immune response in vivo. In addition, we showed that serum LdpA-specific immunoglobulin levels were elevated in patients with pulmonary aspergillosis.


Assuntos
Quitina , Lectinas Tipo C , Humanos , Animais , Camundongos , Quitina/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Aspergillus fumigatus , Inflamação , Fagocitose , Glicoproteínas/metabolismo
3.
Infect Immun ; 92(6): e0002424, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700335

RESUMO

Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.


Assuntos
Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Criptococose , Cryptococcus , Interferon gama , Lectinas Tipo C , Pulmão , Animais , Criptococose/imunologia , Criptococose/microbiologia , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Cryptococcus/imunologia , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/microbiologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Endogâmicos C57BL , Memória Imunológica , Imunidade Inata , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia
4.
Int Immunol ; 34(8): 409-420, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35641096

RESUMO

IL-17 plays important roles in host defense against Candida albicans at barrier surfaces and during invasive infection. However, the role of IL-17 in host defense after colonization of the epidermis, a main site of C. albicans infection, remains poorly understood. Using a murine model of epicutaneous candidiasis without skin abrasion, we found that skin inflammation triggered by epidermal C. albicans colonization was self-limiting with fungal clearance completed by day 7 after inoculation in wild-type mice or animals deficient in IL-17A or IL-17F. In contrast, marked neutrophilic inflammation in the epidermis and impaired fungal clearance were observed in mice lacking both IL-17A and IL-17F. Clearance of C. albicans was independent of Dectin-1, Dectin-2, CARD9 (caspase-recruitment domain family, member 9), TLR2 (Toll-like receptor 2) and MyD88 in the epidermal colonization model. We found that group 3 innate lymphoid cells (ILC3s) and γδT cells were the major IL-17 producers in the epicutaneous candidiasis model. Analyses of Rag2-/- mice and Rag2-/-Il2rg-/- mice revealed that production of IL-17A and IL-17F by ILC3s was sufficient for C. albicans clearance. Finally, we found that depletion of neutrophils impaired C. albicans clearance in the epidermal colonization model. Taken together, these findings indicate a critical and redundant function of IL-17A and IL-17F produced by ILC3s in host defense against C. albicans in the epidermis. The results also suggest that epidermal C. albicans clearance is independent of innate immune receptors or that these receptors act redundantly in fungal recognition and clearance.


Assuntos
Candida albicans , Candidíase , Interleucina-17/imunologia , Animais , Proteínas Adaptadoras de Sinalização CARD , Epiderme/metabolismo , Imunidade Inata , Inflamação , Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Immunity ; 41(3): 402-413, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25176311

RESUMO

Mycobacteria possess various immunomodulatory molecules on the cell wall. Mannose-capped lipoarabinomannan (Man-LAM), a major lipoglycan of Mycobacterium tuberculosis, has long been known to have both inhibitory and stimulatory effects on host immunity. However, the direct Man-LAM receptor that explains its pleiotropic activities has not been clearly identified. Here, we report that a C-type lectin receptor Dectin-2 (gene symbol Clec4n) is a direct receptor for Man-LAM. Man-LAM activated bone-marrow-derived dendritic cells (BMDCs) to produce pro- and anti-inflammatory cytokines, whereas it was completely abrogated in Clec4n(-/-) BMDCs. Man-LAM promoted antigen-specific T cell responses through Dectin-2 on DCs. Furthermore, Man-LAM induced experimental autoimmune encephalitis (EAE) as an adjuvant in mice, whereas Clec4n(-/-) mice were resistant. Upon mycobacterial infection, Clec4n(-/-) mice showed augmented lung pathology. These results demonstrate that Dectin-2 contributes to host immunity against mycobacterial infection through the recognition of Man-LAM.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Lectinas Tipo C/imunologia , Lipopolissacarídeos/imunologia , Infecções por Mycobacterium/imunologia , Animais , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Citocinas/biossíntese , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Inflamação/imunologia , Interferon gama/biossíntese , Interleucina-10/biossíntese , Lectinas Tipo C/genética , Lipopolissacarídeos/química , Manose/química , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Knockout , Infecções por Mycobacterium/genética , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Fator 88 de Diferenciação Mieloide/genética , Ligação Proteica/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/genética , Linfócitos T/imunologia
6.
J Infect Dis ; 223(10): 1753-1765, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33837391

RESUMO

BACKGROUND: Among skin commensal fungi, lipophilic Malassezia species exist on nearly all human skin surfaces. The pathophysiology of Malassezia-associated skin diseases remains poorly understood due in part to the lack of appropriate animal models. Our objective was to investigate the mechanisms underlying Malassezia-induced skin inflammation using a novel murine model that physiologically recapitulates Malassezia skin infection. METHODS: Mice were inoculated epicutaneously with Malassezia yeasts without barrier disruption and in the absence of external lipid supplementation. Skin inflammation, lesional fungal loads, and expression of cytokines and antimicrobial peptides were evaluated in wild-type and mutant mouse strains. RESULTS: Malassezia-induced skin inflammation and epidermal thickening were observed on day 4 after inoculation in wild-type mice. High fungal burdens were detected in the cornified layer on day 2 and decreased thereafter with near complete clearance by day 7 after inoculation. Malassezia-induced skin inflammation and fungal clearance by the host were interleukin-17 (IL-17) dependent with contribution of group 3 innate lymphoid cells. Moreover, IL-17-dependent skin inflammation was mediated through IL-36 receptor and keratinocyte MyD88 signaling. CONCLUSION: Using a new skin infection model, it is shown that Malassezia-induced IL-17- dependent skin inflammation and control of fungal infection are mediated via keratinocyte IL-36 receptor/MyD88 signaling.


Assuntos
Dermatomicoses/imunologia , Interleucina-17/imunologia , Queratinócitos , Fator 88 de Diferenciação Mieloide , Receptores de Interleucina-1/imunologia , Animais , Peptídeos Antimicrobianos , Imunidade Inata , Inflamação/microbiologia , Linfócitos , Malassezia/patogenicidade , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Pele
7.
Infect Immun ; 89(10): e0033021, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34251289

RESUMO

The cell walls and capsules of Cryptococcus neoformans, a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans. In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2 knockout [Dectin-2KO]) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans. Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans, was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagocitose/fisiologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Criptococose/metabolismo , Citocinas/metabolismo , Células Dendríticas/microbiologia , Feminino , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo
8.
J Biol Chem ; 294(45): 16776-16788, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31551352

RESUMO

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of cell-surface immune receptors that bind to sialic acid at terminal glycan residues. Siglecs also recognize nonsialic acid ligands, many of which remain to be characterized. Here, we found that Siglec5 and Siglec14 recognize lipid compounds produced by Trichophyton, a fungal genus containing several pathogenic species. Biochemical approaches revealed that the Siglec ligands are fungal alkanes and triacylglycerols, an unexpected finding that prompted us to search for endogenous lipid ligands of Siglecs. Siglec5 weakly recognized several endogenous lipids, but the mitochondrial lipid cardiolipin and the anti-inflammatory lipid 5-palmitic acid-hydroxystearic acid exhibited potent ligand activity on Siglec5. Further, the hydrophobic stretch in the Siglec5 N terminus region was found to be required for efficient recognition of these lipids. Notably, this hydrophobic stretch was dispensable for recognition of sialic acid. Siglec5 inhibited cell activation upon ligand binding, and accordingly, the lipophilic ligands suppressed interleukin-8 (IL-8) production in Siglec5-expressing human monocytic cells. Siglec14 and Siglec5 have high sequence identity in the extracellular region, and Siglec14 also recognized the endogenous lipids. However, unlike Siglec5, Siglec14 transduces activating signals upon ligand recognition. Indeed, the endogenous lipids induced IL-8 production in Siglec14-expressing human monocytic cells. These results indicated that Siglec5 and Siglec14 can recognize lipophilic ligands that thereby modulate innate immune responses. To our knowledge, this is the first study reporting the binding of Siglecs to lipid ligands, expanding our understanding of the biological function and importance of Siglecs in the innate immunity.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Imunidade Inata , Lectinas/metabolismo , Receptores de Superfície Celular/metabolismo , Alcanos/química , Alcanos/metabolismo , Linhagem Celular , Humanos , Ligantes , Trichophyton/imunologia , Triglicerídeos/química , Triglicerídeos/metabolismo
9.
Immunity ; 34(2): 149-62, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21349428

RESUMO

Interleukin-17A (IL-17A) is the signature cytokine of the recently identified T helper 17 (Th17) cell subset. IL-17 has six family members (IL-17A to IL-17F). Although IL-17A and IL-17F share the highest amino acid sequence homology, they perform distinct functions; IL-17A is involved in the development of autoimmunity, inflammation, and tumors, and also plays important roles in the host defenses against bacterial and fungal infections, whereas IL-17F is mainly involved in mucosal host defense mechanisms. IL-17E (IL-25) is an amplifier of Th2 immune responses. The functions of IL-17B, IL-17C, and IL-17D remain largely elusive. In this review, we describe the identified functions of each IL-17 family member and discuss the potential of these molecules as therapeutic targets.


Assuntos
Interleucina-17/fisiologia , Células Th17/imunologia , Animais , Autoimunidade/imunologia , Infecções Bacterianas/imunologia , Humanos , Imunidade nas Mucosas/imunologia , Inflamação/imunologia , Interleucina-17/biossíntese , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Camundongos Knockout , Família Multigênica , Micoses/imunologia , Neoplasias/imunologia , Receptores de Interleucina-17/química , Receptores de Interleucina-17/deficiência , Receptores de Interleucina-17/fisiologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Células Th17/metabolismo , Células Th2/imunologia
10.
J Immunol ; 201(1): 167-182, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29794016

RESUMO

IL-36α (gene symbol Il1f6), a member of the IL-36 family, is closely associated with inflammatory diseases, including colitis and psoriasis. In this study, we found that Il1f6-/- mice developed milder psoriasiform dermatitis upon treatment with imiquimod, a ligand for TLR ligand 7 (TLR7) and TLR8, whereas Il1f6-/- mice showed similar susceptibility to dextran sodium sulfate-induced colitis to wild-type mice. These effects were observed in both cohoused and separately housed conditions, and antibiotic treatment did not cancel the resistance of Il1f6-/- mice to imiquimod-induced dermatitis. Bone marrow (BM) cell transfer revealed that IL-36α expression in skin-resident cells is important for the pathogenesis of dermatitis in these mice. Following stimulation with IL-36α, the expression of Il1f6 and Il1f9 (IL-36γ), but not Il1f8 (IL-36ß), was enhanced in murine BM-derived Langerhans cells (BMLCs) and murine primary keratinocytes but not in fibroblasts from mice. Upon stimulation with agonistic ligands of TLRs and C-type lectin receptors (CLRs), Il1f6 expression was induced in BMLCs and BM-derived dendritic cells. Furthermore, IL-36α stimulation resulted in significantly increased gene expression of psoriasis-associated Th17-related cytokines and chemokines such as IL-1α, IL-1ß, IL-23, CXCL1, and CXCL2 in BMLCs and fibroblasts, and IL-1α, IL-1ß, IL-17C, and CXCL2 in keratinocytes. Collectively, these results suggest that TLR/CLR signaling-induced IL-36α plays an important role for the development of psoriasiform dermatitis by enhancing Th17-related cytokine/chemokine production in skin-resident cells via a local autoamplification loop.


Assuntos
Adjuvantes Imunológicos/toxicidade , Quimiocinas/biossíntese , Colite/patologia , Imiquimode/toxicidade , Interleucina-1/metabolismo , Queratinócitos/metabolismo , Psoríase/patologia , Pele/patologia , Células Th17/imunologia , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Células Cultivadas , Colite/induzido quimicamente , Células Dendríticas/metabolismo , Sulfato de Dextrana/toxicidade , Fibroblastos/metabolismo , Interleucina-1/genética , Células de Langerhans/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Psoríase/tratamento farmacológico , Psoríase/genética , Pele/citologia , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo
11.
Immunity ; 32(5): 681-91, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20493731

RESUMO

Dectin-2 (gene symbol Clec4n) is a C-type lectin expressed by dendritic cells (DCs) and macrophages. However, its functional roles and signaling mechanisms remain to be elucidated. Here, we generated Clec4n(-/-) mice and showed that this molecule is important for host defense against Candida albicans (C. albicans). Clec4n(-/-) DCs had virtually no fungal alpha-mannan-induced cytokine production. Dectin-2 signaling induced cytokines through an FcRgamma chain and Syk-CARD9-NF-kappaB-dependent signaling pathway without involvement of MAP kinases. The yeast form of C. albicans induced interleukin-1beta (IL-1beta) and IL-23 secretion in a Dectin-2-dependent manner. In contrast, cytokine production induced by the hyphal form was only partially dependent on this lectin. Both yeast and hyphae induced Th17 cell differentiation, in which Dectin-2, but not Dectin-1, was mainly involved. Because IL-17A-deficient mice were highly susceptible to systemic candida infection, this study suggests that Dectin-2 is important in host defense against C. albicans by inducing Th17 cell differentiation.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Diferenciação Celular , Interleucina-17/metabolismo , Lectinas Tipo C/imunologia , Mananas/imunologia , Linfócitos T Auxiliares-Indutores , Animais , Células Cultivadas , Imunoensaio , Interleucina-1beta/imunologia , Interleucina-23/imunologia , Lectinas Tipo C/genética , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia
12.
Microbiol Immunol ; 63(5): 155-163, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30919462

RESUMO

Gut microbes symbiotically colonize the gastrointestinal (GI) tract, interacting with each other and their host to maintain GI tract homeostasis. Recent reports have shown that gut microbes help protect the gut from colonization by pathogenic microbes. Here, we report that commensal microbes prevent colonization of the GI tract by the pathogenic fungus, Candida albicans. Wild-type specific pathogen-free (SPF) mice are resistant to C. albicans colonization of the GI tract. However, administering certain antibiotics to SPF mice enables C. albicans colonization. Quantitative kinetics of commensal bacteria are inversely correlated with the number of C. albicans in the gut. Here, we provide further evidence that transplantation of fecal microbiota is effective in preventing Candida colonization of the GI tract. These data demonstrate the importance of commensal bacteria as a barrier for the GI tract surface and highlight the potential clinical applications of commensal bacteria in preventing pathogenic fungal infections.


Assuntos
Bactérias , Candida albicans/patogenicidade , Candidíase/prevenção & controle , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Simbiose
13.
J Immunol ; 198(1): 61-70, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852745

RESUMO

It is well known that sensitization against fungi is closely associated with severity of asthma. Dectin-1 (gene symbol Clec7a), a C-type lectin receptor, recognizes the fungal cell wall component ß-glucan, as well as some component(s) in house dust mite (HDM) extract. However, the roles of Dectin-1 in HDM-induced allergic airway inflammation remain unclear. In this study, we used Dectin-1-deficient (Clec7a-/-) mice to examine whether Dectin-1 is involved in HDM-induced allergic airway inflammation. We found that HDM-induced eosinophil and neutrophil recruitment into the airways was significantly attenuated in Clec7a-/- mice compared with that in wild-type mice. In addition, HDM-induced IL-5, IL-13, and IL-17 production from mediastinum lymph node cells was reduced in HDM-sensitized Clec7a-/- mice. Dectin-1 was expressed on CD11b+ dendritic cells (DCs), an essential DC subset for the development of allergic inflammation, but not on CD103+ DCs, plasmacytoid DCs, or lung epithelial cells. Transcriptome analysis revealed that the expression of chemokine/chemokine receptors, including CCR7, which is indispensable for DC migration to draining lymph nodes, was decreased in Clec7a-/- DCs. In accordance with these results, the number of HDM-labeled CD11b+ DCs in mediastinum lymph nodes was significantly reduced in Clec7a-/- mice compared with wild-type mice. Taken together, these results suggest that Dectin-1 expressed on CD11b+ DCs senses some molecule(s) in HDM extract and plays a critical role in the induction of HDM-induced allergic airway inflammation by inducing the expression of chemokine/chemokine receptors in DCs.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Lectinas Tipo C/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Antígeno CD11b/imunologia , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/imunologia , Reação em Cadeia da Polimerase em Tempo Real
14.
Proc Natl Acad Sci U S A ; 113(49): 14097-14102, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872290

RESUMO

Tumor metastasis is the cause of most cancer deaths. Although metastases can form in multiple end organs, the liver is recognized as a highly permissive organ. Nevertheless, there is evidence for immune cell-mediated mechanisms that function to suppress liver metastasis by certain tumors, although the underlying mechanisms for the suppression of metastasis remain elusive. Here, we show that Dectin-2, a C-type lectin receptor (CLR) family of innate receptors, is critical for the suppression of liver metastasis of cancer cells. We provide evidence that Dectin-2 functions in resident macrophages in the liver, known as Kupffer cells, to mediate the uptake and clearance of cancer cells. Interestingly, Kupffer cells are selectively endowed with Dectin-2-dependent phagocytotic activity, with neither bone marrow-derived macrophages nor alveolar macrophages showing this potential. Concordantly, subcutaneous primary tumor growth and lung metastasis are not affected by the absence of Dectin-2. In addition, macrophage C-type lectin, a CLR known to be complex with Dectin-2, also contributes to the suppression of liver metastasis. Collectively, these results highlight the hitherto poorly understood mechanism of Kupffer cell-mediated control of metastasis that is mediated by the CLR innate receptor family, with implications for the development of anticancer therapy targeting CLRs.


Assuntos
Células de Kupffer/fisiologia , Lectinas Tipo C/metabolismo , Neoplasias Hepáticas Experimentais/secundário , Metástase Neoplásica/imunologia , Fagocitose , Animais , Linhagem Celular Tumoral , Humanos , Lectinas Tipo C/genética , Camundongos Endogâmicos C57BL , Receptores Imunológicos/metabolismo
15.
J Immunol ; 197(1): 278-87, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194783

RESUMO

The C-type lectin receptor Dectin-2 can trigger the leukotriene C4 synthase-dependent generation of cysteinyl leukotrienes and the caspase-associated recruitment domain 9- and NF-κB-dependent generation of cytokines, such as IL-23, IL-6, and TNF-α, to promote Th2 and Th17 immunity, respectively. Dectin-2 activation also elicits the type 2 cytokine IL-33, but the mechanism by which Dectin-2 induces these diverse innate mediators is poorly understood. In this study, we identify a common upstream requirement for PI3Kδ activity for the generation of each Dectin-2-dependent mediator elicited by the house dust mite species, Dermatophagoides farinae, using both pharmacologic inhibition and small interfering RNA knockdown of PI3Kδ in bone marrow-derived dendritic cells. PI3Kδ activity depends on spleen tyrosine kinase (Syk) and regulates the activity of protein kinase Cδ, indicating that PI3Kδ is a proximal Syk-dependent signaling intermediate. Inhibition of PI3Kδ also reduces cysteinyl leukotrienes and cytokines elicited by Dectin-2 cross-linking, confirming the importance of this molecule in Dectin-2 signaling. Using an adoptive transfer model, we demonstrate that inhibition of PI3Kδ profoundly reduces the capacity of bone marrow-derived dendritic cells to sensitize recipient mice for Th2 and Th17 pulmonary inflammation in response to D. farinae Furthermore, administration of a PI3Kδ inhibitor during the sensitization of wild-type mice prevents the generation of D. farinae-induced pulmonary inflammation. These results demonstrate that PI3Kδ regulates Dectin-2 signaling and its dendritic cell function.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Lectinas Tipo C/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Th17/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases , Dermatophagoides farinae/imunologia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
16.
J Biol Chem ; 291(34): 17629-38, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27358401

RESUMO

LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-ß1,3]GalNAc-α1,3-GalNAc-ß1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2.


Assuntos
Bactérias Gram-Negativas/imunologia , Lectinas Tipo C/imunologia , Células Mieloides/imunologia , Antígenos O/imunologia , Animais , Células HEK293 , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Lectinas Tipo C/genética , Masculino , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
Blood ; 125(19): 3014-23, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25740827

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative therapy for various hematopoietic disorders. Graft-versus-host disease (GVHD) and infections are the major obstacles of HSCT, and their close relationship has been suggested. Although roles of bacterial and viral infections in the pathophysiology of GVHD are well described, impacts of fungal infection on GVHD remain to be elucidated. In mouse models of GVHD, injection of α-mannan (Mn), a major component of fungal cell wall, or heat-killed Candida albicans exacerbated GVHD, particularly in the lung. Mn-induced donor T-cell polarization toward Th17 and lung-specific chemokine environment in GVHD led to accumulation of Th17 cells in the lung. The detrimental effects of Mn on GVHD depended on donor IL-17A production and host C-type lectin receptor Dectin-2. These results suggest a previously unrecognized link between pulmonary GVHD and fungal infection after allogeneic HSCT.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Interleucina-17/fisiologia , Pneumopatias/etiologia , Mananas/efeitos adversos , Células Th17/imunologia , Animais , Western Blotting , Candida albicans/fisiologia , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/patologia , Células Cultivadas , Feminino , Citometria de Fluxo , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Interferon gama/metabolismo , Pneumopatias/mortalidade , Pneumopatias/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Transplante Homólogo
18.
Proc Natl Acad Sci U S A ; 111(8): 3086-91, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516163

RESUMO

CpG DNA, a ligand for Toll-like receptor 9 (TLR9), has been one of the most promising immunotherapeutic agents. Although there are several types of potent humanized CpG oligodeoxynucleotide (ODN), developing "all-in-one" CpG ODNs activating both B cells and plasmacytoid dendritic cells forming a stable nanoparticle without aggregation has not been successful. In this study, we generated a novel nanoparticulate K CpG ODN (K3) wrapped by the nonagonistic Dectin-1 ligand schizophyllan (SPG), K3-SPG. In sharp contrast to K3 alone, K3-SPG stimulates human peripheral blood mononuclear cells to produce a large amount of both type I and type II IFN, targeting the same endosome where IFN-inducing D CpG ODN resides without losing its K-type activity. K3-SPG thus became a potent adjuvant for induction of both humoral and cellular immune responses, particularly CTL induction, to coadministered protein antigens without conjugation. Such potent adjuvant activity of K3-SPG is attributed to its nature of being a nanoparticle rather than targeting Dectin-1 by SPG, accumulating and activating antigen-bearing macrophages and dendritic cells in the draining lymph node. K3-SPG acting as an influenza vaccine adjuvant was demonstrated in vivo in both murine and nonhuman primate models. Taken together, K3-SPG may be useful for immunotherapeutic applications that require type I and type II IFN as well as CTL induction.


Assuntos
Ilhas de CpG/genética , Imunoterapia/métodos , Lectinas Tipo C/metabolismo , Nanopartículas/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Sizofirano/metabolismo , Receptor Toll-Like 9/agonistas , Adjuvantes Imunológicos/farmacologia , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Indutores de Interferon/farmacologia , Lectinas Tipo C/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo
19.
BMC Immunol ; 17: 1, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26727976

RESUMO

BACKGROUND: Streptococcus pneumoniae, a major causative bacterial pathogen of community-acquired pneumonia, possesses a thick polysaccharide capsule. Host defense against this bacterium is mediated by activation of innate immune cells that sense bacterial components. Recently, C-type lectin receptors (CLRs) have garnered much attention in elucidating the recognition mechanism of pathogen-derived polysaccharides. METHODS: In the present study, we first compared the clinical course and neutrophil accumulation in the lungs of Dectin-2 knock-out (KO) and wild type (WT) mice. Mice were infected intratracheally with a serotype 3 strain of S. pneumoniae, and S. pneumoniae bacterial engulfment by neutrophils and inflammatory cytokine and anti-pneumococcal polysaccharide-specific IgG levels were evaluated in bronchoalveolar lavage fluid (BALF). We also examined the effect of Dectin-2 deficiency on interleukin (IL)-12 production by bone marrow-derived dendritic cells (BM-DCs) stimulated with the bacterial components. RESULTS: S. pneumonia-infected Dectin-2KO mice had a shorter survival time, larger bacterial burden and lower interferon gamma (IFN-γ) production in the lungs than WT mice. Although neutrophilic infiltration in the lungs was equivalent between Dectin-2KO mice and WT mice, S. pneumonia engulfment by neutrophils was attenuated in Dectin-2KO mice compared to WT mice. The anti-pneumococcal polysaccharide-specific IgG and IgG3 levels in BALF were lower in Dectin-2KO mice than in WT mice. When BM-DCs were stimulated with S. pneumoniae culture supernatant or its Concanavalin A (ConA)-bound fraction, IL-12 production was abrogated in Dectin-2KO mice compared to WT mice. CONCLUSIONS: We demonstrated that Dectin-2 is intimately involved in the host defense against infection with a serotype 3 strain of S. pneumoniae. Dectin-2-dependent IL-12 production may contribute to IFN-γ synthesis and subsequent production of serotype-specific anti-capsular polysaccharide IgG after S. pneumoniae infection, which may promote S. pneumoniae bacterial opsonization for engulfment.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Lectinas Tipo C/metabolismo , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Sorogrupo , Streptococcus pneumoniae/imunologia , Animais , Formação de Anticorpos , Especificidade de Anticorpos/imunologia , Células da Medula Óssea/patologia , Quimiocinas/metabolismo , Células Dendríticas/imunologia , Mediadores da Inflamação/metabolismo , Interferon gama/biossíntese , Interleucina-12/metabolismo , Lectinas Tipo C/deficiência , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Fagocitose , Infecções Pneumocócicas/patologia
20.
PLoS Pathog ; 10(10): e1004413, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329394

RESUMO

Destruction of the pulmonary epithelium is a major feature of lung diseases caused by the mould pathogen Aspergillus fumigatus. Although it is widely postulated that tissue invasion is governed by fungal proteases, A. fumigatus mutants lacking individual or multiple enzymes remain fully invasive, suggesting a concomitant requirement for other pathogenic activities during host invasion. In this study we discovered, and exploited, a novel, tissue non-invasive, phenotype in A. fumigatus mutants lacking the pH-responsive transcription factor PacC. Our study revealed a novel mode of epithelial entry, occurring in a cell wall-dependent manner prior to protease production, and via the Dectin-1 ß-glucan receptor. ΔpacC mutants are defective in both contact-mediated epithelial entry and protease expression, and significantly attenuated for pathogenicity in leukopenic mice. We combined murine infection modelling, in vivo transcriptomics, and in vitro infections of human alveolar epithelia, to delineate two major, and sequentially acting, PacC-dependent processes impacting epithelial integrity in vitro and tissue invasion in the whole animal. We demonstrate that A. fumigatus spores and germlings are internalised by epithelial cells in a contact-, actin-, cell wall- and Dectin-1 dependent manner and ΔpacC mutants, which aberrantly remodel the cell wall during germinative growth, are unable to gain entry into epithelial cells, both in vitro and in vivo. We further show that PacC acts as a global transcriptional regulator of secreted molecules during growth in the leukopenic mammalian lung, and profile the full cohort of secreted gene products expressed during invasive infection. Our study reveals a combinatorial mode of tissue entry dependent upon sequential, and mechanistically distinct, perturbations of the pulmonary epithelium and demonstrates, for the first time a protective role for Dectin-1 blockade in epithelial defences. Infecting ΔpacC mutants are hypersensitive to cell wall-active antifungal agents highlighting the value of PacC signalling as a target for antifungal therapy.


Assuntos
Aspergillus fumigatus/metabolismo , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Aspergilose Pulmonar/microbiologia , Fatores de Transcrição/metabolismo , Animais , Concentração de Íons de Hidrogênio , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa