Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 461(7261): 236-40, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19741704

RESUMO

It has been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean, although the actual generation mechanisms are still debated. The composition of the lunar highland crust is therefore important for understanding the formation of such a magma ocean and the subsequent evolution of the Moon. The Multiband Imager on the Selenological and Engineering Explorer (SELENE) has a high spatial resolution of optimized spectral coverage, which should allow a clear view of the composition of the lunar crust. Here we report the global distribution of rocks of high plagioclase abundance (approaching 100 vol.%), using an unambiguous plagioclase absorption band recorded by the SELENE Multiband Imager. If the upper crust indeed consists of nearly 100 vol.% plagioclase, this is significantly higher than previous estimates of 82-92 vol.% (refs 2, 6, 7), providing a valuable constraint on models of lunar magma ocean evolution.

2.
Science ; 323(5916): 905-8, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-18988811

RESUMO

We determined model ages of mare deposits on the farside of the Moon on the basis of the crater frequency distributions in 10-meter-resolution images obtained by the Terrain Camera on SELENE (Selenological and Engineering Explorer) (Kaguya). Most mare volcanism that formed mare deposits on the lunar farside ceased at approximately 3.0 billion years ago, suggesting that mare volcanism on the Moon was markedly reduced globally during this period. However, several mare deposits at various locations on the lunar farside also show a much younger age, clustering at approximately 2.5 billion years ago. These young ages indicate that mare volcanism on the lunar farside lasted longer than was previously considered and may have occurred episodically.

3.
Science ; 322(5903): 938-9, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18948501

RESUMO

The inside of Shackleton Crater at the lunar south pole is permanently shadowed; it has been inferred to hold water-ice deposits. The Terrain Camera (TC), a 10-meter-resolution stereo camera onboard the Selenological and Engineering Explorer (SELENE) spacecraft, succeeded in imaging the inside of the crater, which was faintly lit by sunlight scattered from the upper inner wall near the rim. The estimated temperature of the crater floor, based on the crater shape model derived from the TC data, is less than approximately 90 kelvin, cold enough to hold water-ice. However, at the TC's spatial resolution, the derived albedo indicates that exposed relatively pure water-ice deposits are not on the crater floor. Water-ice may be disseminated and mixed with soil over a small percentage of the area or may not exist at all.


Assuntos
Gelo , Lua , Temperatura Baixa , Meio Ambiente Extraterreno , Astronave
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa