Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114041

RESUMO

Diacylglycerol kinase γ (DGKγ) is a lipid kinase to convert diacylglycerol (DG) to phosphatidic acid (PA) and indirectly regulates protein kinase C γ (PKCγ) activity. We previously reported that the basal PKCγ upregulation impairs cerebellar long-term depression (LTD) in the conventional DGKγ knockout (KO) mice. However, the precise mechanism in impaired cerebellar LTD by upregulated PKCγ has not been clearly understood. Therefore, we first produced Purkinje cell-specific DGKγ KO (tm1d) mice to investigate the specific function of DGKγ in Purkinje cells and confirmed that tm1d mice showed cerebellar motor dysfunction in the rotarod and beam tests, and the basal PKCγ upregulation but not PKCα in the cerebellum of tm1d mice. Then, the LTD-induced chemical stimulation, K-glu (50 mM KCl + 100 µM, did not induce phosphorylation of PKCα and dissociation of GluR2 and glutamate receptor interacting protein (GRIP) in the acute cerebellar slices of tm1d mice. Furthermore, treatment with the PKCγ inhibitor, scutellarin, rescued cerebellar LTD, with the phosphorylation of PKCα and the dissociation of GluR2 and GRIP. In addition, nonselective transient receptor potential cation channel type 3 (TRPC3) was negatively regulated by upregulated PKCγ. These results demonstrated that DGKγ contributes to cerebellar LTD by regulation of the basal PKCγ activity.


Assuntos
Cerebelo/fisiopatologia , Diacilglicerol Quinase/genética , Transtornos Motores/genética , Proteína Quinase C/metabolismo , Regulação para Cima , Animais , Apigenina/farmacologia , Diacilglicerol Quinase/metabolismo , Técnicas de Inativação de Genes , Glucuronatos/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Transtornos Motores/metabolismo , Transtornos Motores/fisiopatologia , Fosforilação , Células de Purkinje , Receptores de AMPA/metabolismo , Teste de Desempenho do Rota-Rod
2.
Brain ; 139(11): 2923-2934, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27604307

RESUMO

CTLA4 is an inhibitory regulator of immune responses. Therapeutic CTLA4 blockade enhances T cell responses against cancer and provides striking clinical results against advanced melanoma. However, this therapy is associated with immune-related adverse events. Paraneoplastic neurologic disorders are immune-mediated neurological diseases that develop in the setting of malignancy. The target onconeural antigens are expressed physiologically by neurons, and aberrantly by certain tumour cells. These tumour-associated antigens can be presented to T cells, generating an antigen-specific immune response that leads to autoimmunity within the nervous system. To investigate the risk to develop paraneoplastic neurologic disorder after CTLA4 blockade, we generated a mouse model of paraneoplastic neurologic disorder that expresses a neo -self antigen both in Purkinje neurons and in implanted breast tumour cells. Immune checkpoint therapy with anti-CTLA4 monoclonal antibody in this mouse model elicited antigen-specific T cell migration into the cerebellum, and significant neuroinflammation and paraneoplastic neurologic disorder developed only after anti-CTLA4 monoclonal antibody treatment. Moreover, our data strongly suggest that CD8 + T cells play a final effector role by killing the Purkinje neurons. Taken together, we recommend heightened caution when using CTLA4 blockade in patients with gynaecological cancers, or malignancies of neuroectodermal origin, such as small cell lung cancer, as such treatment may promote paraneoplastic neurologic disorders.


Assuntos
Anticorpos/toxicidade , Antígeno CTLA-4/metabolismo , Síndromes Paraneoplásicas do Sistema Nervoso/etiologia , Síndromes Paraneoplásicas do Sistema Nervoso/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Cerebelo/patologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Atividade Motora/fisiologia , Transtornos dos Movimentos/etiologia , Neuropeptídeos/metabolismo , Síndromes Paraneoplásicas do Sistema Nervoso/complicações , Síndromes Paraneoplásicas do Sistema Nervoso/patologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
3.
Biochem Biophys Res Commun ; 452(4): 1067-70, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25245290

RESUMO

A high incidence of oncogenic K-ras mutations is observed in lung adenocarcinoma of human cases and carcinogen-induced animal models. The process of oncogenic K-ras-mediated lung adenocarcinogenesis can be dissected into two parts: pre- and post-K-ras mutation. Adoption of transgenic lines containing a flox-K-rasG12V transgene eliminates the use of chemical carcinogens and enables us to study directly crucial events post-K-ras mutation without considering the cellular events involved with oncogenic K-ras mutation, e.g., distribution and metabolism of chemical carcinogens, DNA repair, and somatic recombination by host factors. We generated two mouse strains C57BL/6J-Ryr2(tm1Nobs) and A/J-Ryr2(tm1Nobs) in which K-rasG12V can be transcribed from the cytomegalovirus early enhancer/chicken beta actin promoter in virtually any tissue. Upon K-rasG12V induction in lung epithelial cells by an adenovirus expressing the Cre recombinase, the number of tumors in the C57BL/6J-Ryr2(tm1Nobs/+) mouse line was 12.5 times that in the A/J-Ryr2(tm1Nobs/+) mouse line. Quantitative trait locus (QTL) analysis revealed that new three modifier loci, D3Mit19, D3Mit45 and D11Mit20, were involved in the differential susceptibility between the two lines. In addition, we found that differential expression of the wild-type K-ras gene, which was genetically turn out to be anti-oncogenic activity on K-rasG12V, could not account for the different susceptibility in our two K-rasG12V-mediated lung tumor models. Thus, we provide a genetic system that enables us to explore new downstream modifiers post-K-ras mutation.


Assuntos
Carcinogênese/genética , Genes ras/genética , Predisposição Genética para Doença/genética , Neoplasias Pulmonares/genética , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Proteínas ras/genética , Animais , Linhagem Celular Tumoral , Genes Modificadores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Mutação/genética
4.
Exp Anim ; 72(4): 446-453, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37081671

RESUMO

Pleomorphic rhabdomyosarcoma (PRMS) predominantly arises in adult skeletal musculature and is usually associated with poor prognosis. Thus, effective treatments must be developed. PRMS is a rare tumor; therefore, it is critical to develop an experimental system to understand the cellular and molecular mechanisms of PRMS. We previously demonstrated that PRMS develops after p53 gene deletion and oncogenic K-Ras expression in the skeletal muscle tissue. In that study, oncogenic K-Ras-expressing cells were diverse and the period until disease onset was difficult to control. In this study, we developed an experimental system to address this problem. Single cell-derived murine cell lines, designated as RMS310 and RMSg2, were established by limiting the dilution of cells from a lung metastatic tumor colony that were positive for various cancer stem cells and activated skeletal muscle-resident stem/progenitor cell marker genes by RT-PCR. All cell lines stably recapitulated the histological characteristics of human PRMS as bizarre giant cells, desmin-positive cells, and lung metastases in C57BL/6 mice. All subclones of the RMSg2 cells by the limiting dilution in vitro could seed PRMS subcutaneously, and as few as 500 RMSg2 cells were sufficient to form tumors. These results suggest that the RMSg2 cells are multipotent cancer cells that partially combine the properties of skeletal muscle-resident stem/progenitor cells and high tumorigenicity. Thus, our model system's capacity to regenerate tumor tissue in vivo and maintain stable cells in vitro makes it useful for developing therapeutics to treat PRMS.


Assuntos
Rabdomiossarcoma , Proteína Supressora de Tumor p53 , Adulto , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Camundongos Endogâmicos C57BL , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Músculo Esquelético/metabolismo , Linhagem Celular
5.
Am J Respir Cell Mol Biol ; 46(3): 397-406, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22033267

RESUMO

Idiopathic pulmonary fibrosis is a chronic devastating disease of unknown etiology. No therapy is currently available. A growing body of evidence supports the role of transforming growth factor (TGF)-ß1 as the major player in the pathogenesis of the disease. However, attempts to control its expression and to improve the outcome of pulmonary fibrosis have been disappointing. We tested the hypothesis that TGF-ß1 is the dominant factor in the acute and chronic phases of pulmonary fibrosis and developed short interfering (si)RNAs directed toward molecules implicated in the disease. This study developed novel sequences of siRNAs targeting the TGF-ß1 gene and evaluated their therapeutic efficacy in two models of pulmonary fibrosis: a model induced by bleomycin and a novel model of the disease developed spontaneously in mice overexpressing the full length of human TGF-ß1 in the lungs. Intrapulmonary delivery of aerosolized siRNAs of TGF-ß1 with sequences common to humans and rodents significantly inhibited bleomycin-induced pulmonary fibrosis in the acute and chronic phases of the disease and in a dose-dependent manner. Aerosolized human-specific siRNA also efficiently inhibited pulmonary fibrosis, improved lung function, and prolonged survival in human TGF-ß1 transgenic mice. Mice showed no off-target effects after intratracheal administration of siRNA. These results suggest the applicability of these novel siRNAs as tools for treating pulmonary fibrosis in humans.


Assuntos
Terapia Genética/métodos , Fibrose Pulmonar Idiopática/terapia , Pulmão/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta1/genética , Aerossóis , Animais , Bleomicina , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Interferente Pequeno/administração & dosagem , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo
6.
Eur J Immunol ; 41(1): 202-13, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21182091

RESUMO

Phospholipase Cε (PLCε) is an effector of Ras and Rap small GTPases. We showed previously using PLCε-deficient mice that PLCε plays a critical role in activation of cytokine production in non-immune skin cells in a variety of inflammatory reactions. For further investigation of its role in inflammation, we created transgenic mice overexpressing PLCε in epidermal keratinocytes. The resulting transgenic mice spontaneously developed skin inflammation as characterized by formation of adherent silvery scales, excessive growth of keratinocytes, and aberrant infiltration of immune cells such as T cells and DC. Development of the skin symptoms correlated well with increased expression of factors implicated in human inflammatory skin diseases, such as IL-23, in keratinocytes, and with the accumulation of CD4(+) T cells producing IL-22, a potent inducer of keratinocyte proliferation. Intradermal injection of a blocking antibody against IL-23 as well as treatment with the immunosuppressant FK506 reversed these skin phenotypes, which was accompanied by suppression of the IL-22-producing T-cell infiltration. These results reveal a crucial role of PLCε in the development of skin inflammation and suggest a mechanism in which PLCε induces the production of cytokines including IL-23 from keratinocytes, leading to the activation of IL-22-producing T cells.


Assuntos
Citocinas/imunologia , Dermatite/imunologia , Queratinócitos/imunologia , Fosfoinositídeo Fosfolipase C/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Dermatite/enzimologia , Dermatite/patologia , Feminino , Humanos , Imunossupressores/farmacologia , Interleucina-23/análise , Interleucina-23/antagonistas & inibidores , Interleucina-23/imunologia , Interleucinas/análise , Interleucinas/imunologia , Queratinócitos/enzimologia , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfoinositídeo Fosfolipase C/análise , Fosfoinositídeo Fosfolipase C/metabolismo , Tacrolimo/farmacologia , Regulação para Cima , Interleucina 22
7.
Biochem Biophys Res Commun ; 413(2): 236-40, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21875576

RESUMO

Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-κB, IKK, MAPK, MEK, and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.


Assuntos
Transformação Celular Neoplásica/genética , Dano ao DNA/genética , Genes ras , Guanina/análogos & derivados , Estresse Oxidativo/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Guanina/metabolismo , Camundongos , Mutação , Óxido Nítrico Sintase Tipo II/biossíntese
8.
Front Immunol ; 12: 620541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763067

RESUMO

Tenascin-C (TNC) is an extracellular matrix glycoprotein that is expressed during embryogenesis. It is not expressed in normal adults, but is up-regulated under pathological conditions. Although TNC knockout mice do not show a distinct phenotype, analyses of disease models using TNC knockout mice combined with in vitro experiments revealed the diverse functions of TNC. Since high TNC levels often predict a poor prognosis in various clinical settings, we developed a transgenic mouse that overexpresses TNC through Cre recombinase-mediated activation. Genomic walking showed that the transgene was integrated into and truncated the Atp8a2 gene. While homozygous transgenic mice showed a severe neurological phenotype, heterozygous mice were viable, fertile, and did not exhibit any distinct abnormalities. Breeding hemizygous mice with Nkx2.5 promoter-Cre or α-myosin heavy chain promoter Cre mice induced the heart-specific overexpression of TNC in embryos and adults. TNC-overexpressing mouse hearts did not have distinct histological or functional abnormalities. However, the expression of proinflammatory cytokines/chemokines was significantly up-regulated and mortality rates during the acute stage after myocardial infarction were significantly higher than those of the controls. Our novel transgenic mouse may be applied to investigations on the role of TNC overexpression in vivo in various tissue/organ pathologies using different Cre donors.


Assuntos
Infarto do Miocárdio/imunologia , Doenças Neurodegenerativas/genética , Tenascina/genética , Animais , Passeio de Cromossomo , Citocinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Homozigoto , Mediadores da Inflamação/metabolismo , Integrases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas/genética , Tenascina/metabolismo , Miosinas Ventriculares/genética
9.
Neuroscience ; 426: 88-100, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846755

RESUMO

GABA and glycine are inhibitory neurotransmitters. However, the mechanisms underlying the formation of GABAergic and glycinergic synapses remain unclear. The influence of GABAergic input deprivation on inhibitory terminal formation was investigated using Purkinje cell (PC)-specific vesicular GABA transporter (VGAT) knockout (L7-VGAT) mice, in which GABA release from PCs diminishes in an age-dependent manner. We compared the late development of GABAergic and glycinergic terminals in the cerebellar nucleus (CN) between control and L7-VGAT mice. In the control CN, the density of glutamate decarboxylase (GAD)-positive dots remained unchanged between postnatal 2 months (P2M) and 13 months (P13M), whereas glycine transporter 2 (GlyT2)-positive dots increased in density during this time frame. No difference in the density of GlyT2-positive dots was observed between control and L7-VGAT mice at P2M, but the density was significantly higher in the L7-VGAT fastigial nuclei (FN) than the control FN at P13M. When VGAT was absent from PC terminals, GlyT2-positive dots included GAD and VGAT and formed synapses. These results indicated that GABAergic terminals were formed by P2M, glycinergic terminals were actively formed after P2M, and more glycinergic terminals were formed in the L7-VGAT FN than in the control FN, suggesting that the increased glycinergic terminals may derive from interneurons within the FN and may also release GABA. These results suggest that the deprivation of GABAergic inputs from PCs may accelerate the formation of co-releasing terminals derived from interneurons and that the inhibitory terminal numbers and types may be regulated by the quantity of functional GABAergic inputs.


Assuntos
Núcleos Cerebelares/metabolismo , Neurotransmissores/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Núcleos Cerebelares/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Glicina/metabolismo , Interneurônios/metabolismo , Camundongos Transgênicos , Células de Purkinje/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
10.
Biochem Biophys Res Commun ; 390(3): 1029-33, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19854154

RESUMO

The CACNA1A gene encodes the poreforming, voltage-sensitive subunit of the voltage-dependent Ca(v)2.1 calcium channel. Mutations in this gene have been linked to several human disorders, including familial hemiplegic migraine type 1, episodic ataxia type 2, and spinocerebellar ataxia type 6. In mice, mutations of the homolog Cacna1a cause recessively inherited phenotypes in tottering, rolling Nagoya, rocker, and leaner mice. Here we describe two knockdown mice with 28.4+/-3.4% and 13.8+/-3.3% of the wild-type Ca(v)2.1 quantity. 28.4+/-3.4% level mutants displayed ataxia, absence-like seizures and progressive cerebellar atrophy, although they had a normal life span. Mutants with 13.8+/-3.3% level exhibited ataxia severer than the 28.4+/-3.4% level mutants, absence-like seizures and additionally paroxysmal dyskinesia, and died premature around 3 weeks of age. These results indicate that knock down of Ca(v)2.1 quantity to 13.8+/-3.3% of the wild-type level are sufficient to induce the all neurological disorders observed in natural occurring Cacna1a mutants. These knockdown animals with Ca(v)2.1 calcium channels intact can contribute to functional studies of the molecule in the disease.


Assuntos
Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo P/genética , Canais de Cálcio Tipo Q/genética , Ataxia Cerebelar/genética , Animais , Ataxia Cerebelar/patologia , Ataxia Cerebelar/fisiopatologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Mutantes
11.
eNeuro ; 6(3)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118204

RESUMO

The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neuronal circuit level because of perturbations in Golgi pH are not fully understood. In addition, morphological alteration of the Golgi apparatus is associated with several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Here, we used anatomical and electrophysiological approaches to characterize morphological and functional abnormalities of neuronal circuits in Golgi pH regulator (GPHR) conditional knock-out mice. Purkinje cells (PCs) from the mutant mice exhibited vesiculation and fragmentation of the Golgi apparatus, followed by axonal degeneration and progressive cell loss. Morphological analysis provided evidence for the disruption of basket cell (BC) terminals around PC soma, and electrophysiological recordings showed selective loss of large amplitude responses, suggesting BC terminal disassembly. In addition, the innervation of mutant PCs was altered such that climbing fiber (CF) terminals abnormally synapsed on the somatic spines of mutant PCs in the mature cerebellum. The combined results describe an essential role for luminal acidification of the Golgi apparatus in maintaining proper neuronal morphology and neuronal circuitry.


Assuntos
Cerebelo/metabolismo , Cerebelo/ultraestrutura , Complexo de Golgi/ultraestrutura , Plasticidade Neuronal , Neurônios/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/patologia , Modelos Animais de Doenças , Feminino , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Camundongos Knockout , Vias Neurais/metabolismo , Vias Neurais/ultraestrutura , Neurônios/metabolismo , Cultura Primária de Células , Células de Purkinje/metabolismo , Células de Purkinje/ultraestrutura
12.
Mol Cell Biol ; 25(6): 2191-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743817

RESUMO

Phospholipase Cepsilon is a novel class of phosphoinositide-specific phospholipase C, identified as a downstream effector of Ras and Rap small GTPases. We report here the first genetic analysis of its physiological function with mice whose phospholipase Cepsilon is catalytically inactivated by gene targeting. The hearts of mice homozygous for the targeted allele develop congenital malformations of both the aortic and pulmonary valves, which cause a moderate to severe degree of regurgitation with mild stenosis and result in ventricular dilation. The malformation involves marked thickening of the valve leaflets, which seems to be caused by a defect in valve remodeling at the late stages of semilunar valvulogenesis. This phenotype has a remarkable resemblance to that of mice carrying an attenuated epidermal growth factor receptor or deficient in heparin-binding epidermal growth factor-like growth factor. Smad1/5/8, which is implicated in proliferation of the valve cells downstream of bone morphogenetic protein, shows aberrant activation at the margin of the developing semilunar valve tissues in embryos deficient in phospholipase Cepsilon. These results suggest a crucial role of phospholipase Cepsilon downstream of the epidermal growth factor receptor in controlling semilunar valvulogenesis through inhibition of bone morphogenetic protein signaling.


Assuntos
Valva Aórtica/anormalidades , Valva Aórtica/embriologia , Valva Pulmonar/anormalidades , Valva Pulmonar/embriologia , Fosfolipases Tipo C/fisiologia , Alelos , Animais , Valva Aórtica/imunologia , Defeito do Septo Aortopulmonar/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Cardiomiopatia Dilatada/etiologia , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Receptores ErbB/deficiência , Receptores ErbB/genética , Receptores ErbB/fisiologia , Marcação de Genes , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/genética , Ventrículos do Coração/patologia , Camundongos , Camundongos Mutantes , Mutação/genética , Fosfoinositídeo Fosfolipase C , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Valva Pulmonar/imunologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Smad , Proteína Smad1 , Proteína Smad5 , Proteína Smad8 , Transativadores/análise , Transativadores/genética , Transativadores/metabolismo , Fosfolipases Tipo C/análise , Fosfolipases Tipo C/genética
13.
Elife ; 72018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30091706

RESUMO

Outside of the neurogenic niches of the brain, postmitotic neurons have not been found to undergo efficient regeneration. We demonstrate that mouse Purkinje cells (PCs), which are born at midgestation and are crucial for development and function of cerebellar circuits, are rapidly and fully regenerated following their ablation at birth. New PCs are produced from immature FOXP2+ Purkinje cell precursors (iPCs) that are able to enter the cell cycle and support normal cerebellum development. The number of iPCs and their regenerative capacity, however, diminish soon after birth and consequently PCs are poorly replenished when ablated at postnatal day five. Nevertheless, the PC-depleted cerebella reach a normal size by increasing cell size, but scaling of neuron types is disrupted and cerebellar function is impaired. Our findings provide a new paradigm in the field of neuron regeneration by identifying a population of immature neurons that buffers against perinatal brain injury in a stage-dependent process.


Assuntos
Proliferação de Células , Cerebelo/crescimento & desenvolvimento , Cerebelo/lesões , Células de Purkinje/fisiologia , Regeneração , Células-Tronco/fisiologia , Fatores Etários , Animais , Camundongos
14.
PLoS One ; 13(5): e0197078, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734386

RESUMO

BACKGROUND: Brain natriuretic peptide (BNP) is an important biomarker for patients with cardiovascular diseases, including heart failure, hypertension and cardiac hypertrophy. It is also known that BNP levels are relatively higher in patients with chronic kidney disease and no heart disease; however, the mechanism remains unclear. METHODS AND RESULTS: We developed a BNP reporter mouse and occasionally found that this promoter was activated specifically in the papillary tip of the kidneys, and its activation was not accompanied by BNP mRNA expression. No evidence was found to support the existence of BNP isoforms or other nucleotide expression apart from BNP and tdTomato. The pBNP-tdTomato-positive cells were interstitial cells and were not proliferative. Unexpectedly, both the expression and secretion of BNP increased in primary cultured neonatal cardiomyocytes after their treatment with an extract of the renal papillary tip. Intraperitoneal injection of the extract of the papillary tips reduced blood pressure from 210 mmHg to 165 mmHg, the decrease being accompanied by an increase in serum BNP and urinary cGMP production in stroke-prone spontaneously hypertensive (SHR-SP) rats. Furthermore the induction of BNP by the papillary extract from rats with heart failure due to myocardial infarction was increased in cardiomyocytes. CONCLUSIONS: These results suggested that the papillary tip express a substance that can stimulate BNP production and secretion from cardiomyocytes.


Assuntos
Doenças Cardiovasculares/genética , GMP Cíclico/genética , Peptídeo Natriurético Encefálico/genética , Insuficiência Renal Crônica/genética , Animais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , GMP Cíclico/metabolismo , Humanos , Medula Renal/citologia , Medula Renal/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/biossíntese , Cultura Primária de Células , Ratos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
15.
Cancer Res ; 64(24): 8808-10, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15604236

RESUMO

Mutational activation of the ras proto-oncogenes is frequently found in skin cancers. However, the nature of downstream signaling pathways from Ras involved in skin carcinogenesis remains poorly understood. Recently, we and others identified phospholipase C (PLC) epsilon as an effector of Ras. Here we have examined the role of PLCepsilon in de novo skin chemical carcinogenesis by using mice whose PLCepsilon is genetically inactivated. PLCepsilon(-/-) mice exhibit delayed onset and markedly reduced incidence of skin squamous tumors induced by initiation with 7,12-dimethylbenz(a)anthracene followed by promotion with 12-O-tetradecanoylphorbol-13-acetate (TPA). Furthermore, the papillomas formed in PLCepsilon(-/-) mice fail to undergo malignant progression into carcinomas, in contrast to a malignant conversion rate of approximately 20% observed with papillomas in PLCepsilon(+/+) mice. In all of the tumors analyzed, the Ha-ras gene is mutationally activated irrespective of the PLCepsilon background. The skin of PLCepsilon(-/-) mice fails to exhibit basal layer cell proliferation and epidermal hyperplasia in response to TPA treatment. These results indicate a crucial role of PLCepsilon in ras oncogene-induced de novo carcinogenesis and downstream signaling from TPA, introducing PLCepsilon as a candidate molecular target for the development of anticancer drugs.


Assuntos
Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/enzimologia , Fosfolipases Tipo C/fisiologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinógenos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosfoinositídeo Fosfolipase C , RNA/análise , RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Acetato de Tetradecanoilforbol , Fosfolipases Tipo C/biossíntese , Fosfolipases Tipo C/deficiência , Fosfolipases Tipo C/genética , Proteínas ras/genética
16.
Dev Growth Differ ; 36(6): 629-632, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37281708

RESUMO

We report a simplified and reliable method for non-radioactive in situ hybridization to whole Drosophila embryos. In the previous method (Tautz and Pfeifle, 1989) the post-hybridization wash, or the procedure for washing non-hybridized probe away from embryos depends simply on diffusion. We modified the method with application of electrophoresis to the wash. After hybridized with RNA probe, embryos were transferred to a small well where an electric charge was given to drive non-hybridized probe away from the embryos. This procedure enables us to acquire a much higher signal-to-noise ratio than that obtained from a conventional method. Furthermore, this is a time-saving method. We propose a term "electro-wash" for this procedure.

17.
Dev Growth Differ ; 38(5): 489-498, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37281214

RESUMO

Mitochondrial large ribosomal RNA (mtlrRNA) has been identified as a cytoplasmic factor inducing pole cells in ultraviolet (UV)-sterilized Drosophila embryos. In situ hybridization studies have revealed that mtlrRNA is present outside mitochondria localized on the surface of polar granules during the cleavage stage. In the present study, we describe the developmental changes in extramitochondrial mtlrRNA distribution through early embryogenesis using in situ hybridization at the light and electron microscopic level. No mtlrRNA signal was discernible on polar granules in the mature oocyte, unless the oocyte was activated for development. mtlrRNA was localized on the surface of polar granules during a limited period of stages from oocyte activation to pole bud formation and disappeared as soon as being detached from polar granules without entering pole cells. These changes in the temporal and spatial distribution of mtlrRNA outside mitochondria are compatible with the idea that mtlrRNA is required for pole cell formation but not for the differentiation of pole cells as functional germ cells.

18.
PLoS One ; 9(8): e104479, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119884

RESUMO

The skin is an immune organ that contains innate and acquired immune systems and thus is able to respond to exogenous stimuli producing large amount of proinflammatory cytokines including IL-1 and IL-1 family members. The role of the epidermal IL-1 is not limited to initiation of local inflammatory responses, but also to induction of systemic inflammation. However, association of persistent release of IL-1 family members from severe skin inflammatory diseases such as psoriasis, epidermolysis bullosa, atopic dermatitis, blistering diseases and desmoglein-1 deficiency syndrome with diseases in systemic organs have not been so far assessed. Here, we showed the occurrence of severe systemic cardiovascular diseases and metabolic abnormalities including aberrant vascular wall remodeling with aortic stenosis, cardiomegaly, impaired limb and tail circulation, fatty tissue loss and systemic amyloid deposition in multiple organs with liver and kidney dysfunction in mouse models with severe dermatitis caused by persistent release of IL-1s from the skin. These morbid conditions were ameliorated by simultaneous administration of anti-IL-1α and IL-1ß antibodies. These findings may explain the morbid association of arteriosclerosis, heart involvement, amyloidosis and cachexia in severe systemic skin diseases and systemic autoinflammatory diseases, and support the value of anti-IL-1 therapy for systemic inflammatory diseases.


Assuntos
Amiloidose/imunologia , Doenças Cardiovasculares/imunologia , Emaciação/imunologia , Interleucina-1/antagonistas & inibidores , Interleucina-1/metabolismo , Pele/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Colesterol/sangue , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Interleucina-1/imunologia , Camundongos , Camundongos Transgênicos , Pele/imunologia , Tomografia Computadorizada por Raios X
19.
Br J Pharmacol ; 168(5): 1088-100, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22882023

RESUMO

BACKGROUND AND PURPOSE: Anticonvulsants have been developed according to the traditional neurotransmission imbalance hypothesis. However, the anticonvulsive pharmacotherapy currently available remains unsatisfactory. To develop new antiepileptic drugs with novel antiepileptic mechanisms, we have tested the antiepileptic actions of ONO-2506, a glial modulating agent, and its effects on tripartite synaptic transmission. EXPERIMENTAL APPROACH: Dose-dependent effects of ONO-2506 on maximal-electroshock seizure (MES), pentylenetetrazol-induced seizure (PTZ) and epileptic discharge were determined in a genetic model of absence epilepsy in mice (Cacna1a(tm2Nobs/tm2Nobs) strain). Antiepileptic mechanisms of ONO-2506 were analysed by examining the interaction between ONO-2506 and transmission-modulating toxins (tetanus toxin, fluorocitrate, tetrodotoxin) on release of l-glutamate, d-serine, GABA and kynurenic acid in the medial-prefrontal cortex (mPFC) of freely moving rats using microdialysis and primary cultured rat astrocytes. KEY RESULTS: ONO-2506 inhibited spontaneous epileptic discharges in Cacna1a(tm2Nobs/tm2Nobs) mice without affecting MES or PTZ. Given systemically, ONO-2506 increased basal release of GABA and kynurenic acid in the mPFC through activation of both neuronal and glial exocytosis, but inhibited depolarization-induced releases of all transmitters. ONO-2506 increased basal glial release of kynurenic acid without affecting those of l-glutamate, d-serine or GABA. However, ONO-2506 inhibited AMPA-induced releases of l-glutamate, d-serine, GABA and kynurenic acid. CONCLUSIONS AND IMPLICATIONS: ONO-2506 did not affect traditional convulsive tests but markedly inhibited epileptic phenomena in the genetic epilepsy mouse model. ONO-2506 enhanced release of inhibitory neuro- and gliotransmitters during the resting stage and inhibited tripartite transmission during the hyperactive stage. The results suggest that ONO-2506 is a novel potential glial-targeting antiepileptic drug. LINKED ARTICLE: This article is commented on by Onat, pp. 1086-1087 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12050.


Assuntos
Anticonvulsivantes/uso terapêutico , Caprilatos/uso terapêutico , Epilepsia/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Caprilatos/farmacologia , Células Cultivadas , Convulsivantes , Modelos Animais de Doenças , Eletrochoque , Epilepsia/etiologia , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Ácido Glutâmico/metabolismo , Ácido Cinurênico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pentilenotetrazol , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Serina/metabolismo , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo
20.
Front Cell Neurosci ; 7: 286, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24474904

RESUMO

γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the adult mammalian central nervous system and plays modulatory roles in neural development. The vesicular GABA transporter (VGAT) is an essential molecule for GABAergic neurotransmission due to its role in vesicular GABA release. Cerebellar Purkinje cells (PCs) are GABAergic projection neurons that are indispensable for cerebellar function. To elucidate the significance of VGAT in cerebellar PCs, we generated and characterized PC-specific VGAT knockout (L7-VGAT) mice. VGAT mRNAs and proteins were specifically absent in the 40-week-old L7-VGAT PCs. The morphological characteristics, such as lamination and foliation of the cerebellar cortex, of the L7-VGAT mice were similar to those of the control littermate mice. Moreover, the protein expression levels and patterns of pre- (calbindin and parvalbumin) and postsynaptic (GABA-A receptor α1 subunit and gephyrin) molecules between the L7-VGAT and control mice were similar in the deep cerebellar nuclei that receive PC projections. However, the L7-VGAT mice performed poorly in the accelerating rotarod test and displayed ataxic gait in the footprint test. The L7-VGAT mice also exhibited severer ataxia as VGAT deficits progressed. These results suggest that VGAT in cerebellar PCs is not essential for the rough maintenance of cerebellar structure, but does play an important role in motor coordination. The L7-VGAT mice are a novel model of ataxia without PC degeneration, and would also be useful for studying the role of PCs in cognition and emotion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa