Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916476

RESUMO

Models have always been central to inferring molecular evolution and to reconstructing phylogenetic trees. Their use typically involves the development of a mechanistic framework reflecting our understanding of the underlying biological processes, such as nucleotide substitu- tions, and the estimation of model parameters by maximum likelihood or Bayesian inference. However, deriving and optimizing the likelihood of the data is not always possible under complex evolutionary scenarios or even tractable for large datasets, often leading to unrealistic simplifying assumptions in the fitted models. To overcome this issue, we coupled stochastic simulations of genome evolution with a new supervised deep learning model to infer key parameters of molecular evolution. Our model is designed to directly analyze multiple sequence alignments and estimate per-site evolutionary rates and divergence, without requiring a known phylogenetic tree. The accuracy of our predictions matched that of likelihood-based phylogenetic inference, when rate heterogeneity followed a simple gamma distribution, but it strongly exceeded it under more complex patterns of rate variation, such as codon models. Our approach is highly scalable and can be efficiently applied to genomic data, as we showed on a dataset of 26 million nucleotides from the clownfish clade. Our simulations also showed that the integration of per-site rates obtained by deep learning within a Bayesian framework led to significantly more accu- rate phylogenetic inference, particularly with respect to the estimated branch lengths. We thus propose that future advancements in phylogenetic analysis will benefit from a semi-supervised learning approach that combines deep-learning estimation of substitution rates, which allows for more flexible models of rate variation, and probabilistic inference of the phylogenetic tree, which guarantees interpretability and a rigorous assessment of statistical support.

2.
Mol Ecol ; 33(11): e17347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38624248

RESUMO

Clownfish (subfamily Amphiprioninae) are an iconic group of coral reef fish that evolved a mutualistic interaction with sea anemones, which triggered the adaptive radiation of the clade. Within clownfishes, the "skunk complex" is particularly interesting. Besides ecological speciation, interspecific gene flow and hybrid speciation are thought to have shaped the evolution of the group. We investigated the mechanisms characterizing the diversification of this complex. By taking advantage of their disjunct geographical distribution, we obtained whole-genome data of sympatric and allopatric populations of the three main species of the complex (Amphiprion akallopisos, A. perideraion and A. sandaracinos). We examined population structure, genomic divergence and introgression signals and performed demographic modelling to identify the most realistic diversification scenario. We excluded scenarios of strict isolation or hybrid origin of A. sandaracinos. We discovered moderate gene flow from A. perideraion to the ancestor of A. akallopisos + A. sandaracinos and weak gene flow between the species in the Indo-Australian Archipelago throughout the diversification of the group. We identified introgressed regions in A. sandaracinos and detected in A. perideraion two large regions of high divergence from the two other species. While we found that gene flow has occurred throughout the species' diversification, we also observed that recent admixture was less pervasive than initially thought, suggesting a role of host repartition or behavioural barriers in maintaining the genetic identity of the species in sympatry.


Assuntos
Fluxo Gênico , Especiação Genética , Genética Populacional , Perciformes , Animais , Perciformes/genética , Simpatria , Austrália , Filogenia , Recifes de Corais , Simbiose/genética
3.
Mol Ecol ; 33(14): e17436, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38872589

RESUMO

Even seemingly homogeneous on the surface, the oceans display high environmental heterogeneity across space and time. Indeed, different soft barriers structure the marine environment, which offers an appealing opportunity to study various evolutionary processes such as population differentiation and speciation. Here, we focus on Amphiprion clarkii (Actinopterygii; Perciformes), the most widespread of clownfishes that exhibits the highest colour polymorphism. Clownfishes can only disperse during a short pelagic larval phase before their sedentary adult lifestyle, which might limit connectivity among populations, thus facilitating speciation events. Consequently, the taxonomic status of A. clarkii has been under debate. We used whole-genome resequencing data of 67 A. clarkii specimens spread across the Indian and Pacific Oceans to characterize the species' population structure, demographic history and colour polymorphism. We found that A. clarkii spread from the Indo-Pacific Ocean to the Pacific and Indian Oceans following a stepping-stone dispersal and that gene flow was pervasive throughout its demographic history. Interestingly, colour patterns differed noticeably among the Indonesian populations and the two populations at the extreme of the sampling distribution (i.e. Maldives and New Caledonia), which exhibited more comparable colour patterns despite their geographic and genetic distances. Our study emphasizes how whole-genome studies can uncover the intricate evolutionary past of wide-ranging species with diverse phenotypes, shedding light on the complex nature of the species concept paradigm.


Assuntos
Fluxo Gênico , Genética Populacional , Perciformes , Animais , Perciformes/genética , Perciformes/classificação , Oceano Pacífico , Pigmentação/genética , Oceano Índico , Evolução Biológica , Sequenciamento Completo do Genoma , Cor
4.
Mol Phylogenet Evol ; 190: 107954, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898295

RESUMO

Species are seen as the fundamental unit of biotic diversity, and thus their delimitation is crucial for defining measures for diversity assessments and studying evolution. Differences between species have traditionally been associated with variation in morphology. And yet, the discovery of cryptic diversity suggests that the evolution of distinct lineages does not necessarily involve morphological differences. Here, we analyze 1,684,987 variant sites and over 4,000 genes for more than 400 samples to show how a tropical montane plant lineage (Geonoma undata species complex) is composed of numerous unrecognized genetic groups that are not morphologically distinct. We find that 11 to 14 clades do not correspond to the three currently recognized species. Most clades are genetically different and geographic distance and topography are the most important factors determining this genetic divergence. The genetic structure of this lineage does not match its morphological variation. Instead, this species complex constitutes the first example of a hyper-cryptic plant radiation in tropical mountains.


Assuntos
Biodiversidade , Deriva Genética , Filogenia , Especiação Genética
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031155

RESUMO

Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.


Assuntos
Adaptação Fisiológica , Peixes/crescimento & desenvolvimento , Pigmentação da Pele/fisiologia , Hormônios Tireóideos/metabolismo , Animais , Anêmonas-do-Mar
6.
Syst Biol ; 70(4): 844-854, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33084875

RESUMO

Next-generation-sequencing genotype callers are commonly used in studies to call variants from newly sequenced species. However, due to the current availability of genomic resources, it is still common practice to use only one reference genome for a given genus, or even one reference for an entire clade of a higher taxon. The problem with traditional genotype callers, such as the one from GATK, is that they are optimized for variant calling at the population level. However, when these callers are used at the phylogenetic level, the consequences for downstream analyses can be substantial. Here, we performed simulations to compare the performance between the genotype callers of GATK and ATLAS, and present their differences at various phylogenetic scales. We show that the genotype caller of GATK substantially underestimates the number of variants at the phylogenetic level, but not at the population level. We also found that the accuracy of heterozygote calls declines with increasing distance to the reference genome. We quantified this decline and found that it is very sharp in GATK, while ATLAS maintains high accuracy even at moderately divergent species from the reference. We further suggest that efforts should be taken towards acquiring more reference genomes per species, before pursuing high-scale phylogenomic studies. [ATLAS; efficiency of SNP calling; GATK; heterozygote calling; next-generation sequencing; reference genome; variant calling.].


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Genômica , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único
7.
Syst Biol ; 70(2): 376-388, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681798

RESUMO

Current phylogenetic comparative methods modeling quantitative trait evolution generally assume that, during speciation, phenotypes are inherited identically between the two daughter species. This, however, neglects the fact that species consist of a set of individuals, each bearing its own trait value. Indeed, because descendent populations after speciation are samples of a parent population, we can expect their mean phenotypes to randomly differ from one another potentially generating a "jump" of mean phenotypes due to asymmetrical trait inheritance at cladogenesis. Here, we aim to clarify the effect of asymmetrical trait inheritance at speciation on macroevolutionary analyses, focusing on model testing and parameter estimation using some of the most common models of quantitative trait evolution. We developed an individual-based simulation framework in which the evolution of phenotypes is determined by trait changes at the individual level accumulating across generations, and cladogenesis occurs then by separation of subsets of the individuals into new lineages. Through simulations, we assess the magnitude of phenotypic jumps at cladogenesis under different modes of trait inheritance at speciation. We show that even small jumps can strongly alter both the results of model selection and parameter estimations, potentially affecting the biological interpretation of the estimated mode of evolution of a trait. Our results call for caution when interpreting analyses of trait evolution, while highlighting the importance of testing a wide range of alternative models. In the light of our findings, we propose that future methodological advances in comparative methods should more explicitly model the intraspecific variability around species mean phenotypes and how it is inherited at speciation.


Assuntos
Evolução Biológica , Especiação Genética , Simulação por Computador , Humanos , Fenótipo , Filogenia
8.
Syst Biol ; 71(1): 242-258, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33964165

RESUMO

Temperate woody plants in the Northern Hemisphere have long been known to exhibit high species richness in East Asia and North America and significantly lower diversity in Europe, but the causes of this pattern remain debated. Here, we quantify the roles of dispersal, niche evolution, and extinction in shaping the geographic diversity of the temperate woody plant family Juglandaceae (walnuts and their relatives). Integrating evidence from molecular, morphological, fossil, and (paleo)environmental data, we find strong support for a Boreotropical origin of the family with contrasting evolutionary trajectories between the temperate subfamily Juglandoideae and the tropical subfamily Engelhardioideae. Juglandoideae rapidly evolved frost tolerance when the global climate shifted to ice-house conditions from the Oligocene, with diversification at high latitudes especially in Europe and Asia during the Miocene. Subsequent range contraction at high latitudes and high levels of extinction in Europe driven by global cooling led to the current regional disparity in species diversity. Engelhardioideae showed temperature conservatism while adapting to increased humidity, tracking tropical climates to low latitudes since the middle Eocene with comparatively little diversification, perhaps due to high competition in the tropical zone. The biogeographic history of Juglandaceae shows that the North Atlantic land bridge and Europe played more critical roles than previously thought in linking the floras of East Asia and North America, and showcases the complex interplay among climate change, niche evolution, dispersal, and extinction that shaped the modern disjunct pattern of species richness in temperate woody plants. [Boreotropical origin; climatic niche evolution; disjunct distribution; dispersal; diversity anomaly; extinction; Juglandaceae.].


Assuntos
Juglandaceae , Juglans , Fósseis , Filogenia , Clima Tropical
9.
Proc Natl Acad Sci U S A ; 116(11): 5027-5036, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30808804

RESUMO

Patterns of molecular coevolution can reveal structural and functional constraints within or among organic molecules. These patterns are better understood when considering the underlying evolutionary process, which enables us to disentangle the signal of the dependent evolution of sites (coevolution) from the effects of shared ancestry of genes. Conversely, disregarding the dependent evolution of sites when studying the history of genes negatively impacts the accuracy of the inferred phylogenetic trees. Although molecular coevolution and phylogenetic history are interdependent, analyses of the two processes are conducted separately, a choice dictated by computational convenience, but at the expense of accuracy. We present a Bayesian method and associated software to infer how many and which sites of an alignment evolve according to an independent or a pairwise dependent evolutionary process, and to simultaneously estimate the phylogenetic relationships among sequences. We validate our method on synthetic datasets and challenge our predictions of coevolution on the 16S rRNA molecule by comparing them with its known molecular structure. Finally, we assess the accuracy of phylogenetic trees inferred under the assumption of independence among sites using synthetic datasets, the 16S rRNA molecule and 10 additional alignments of protein-coding genes of eukaryotes. Our results demonstrate that inferring phylogenetic trees while accounting for dependent site evolution significantly impacts the estimates of the phylogeny and the evolutionary process.


Assuntos
Evolução Molecular , Filogenia , Teorema de Bayes , Modelos Genéticos , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Software
10.
Mol Phylogenet Evol ; 157: 107068, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422648

RESUMO

Gesneriaceae (ca. 3400 species) is a pantropical plant family with a wide range of growth form and floral morphology that are associated with repeated adaptations to different environments and pollinators. Although Gesneriaceae systematics has been largely improved by the use of Sanger sequencing data, our understanding of the evolutionary history of the group is still far from complete due to the limited number of informative characters provided by this type of data. To overcome this limitation, we developed here a Gesneriaceae-specific gene capture kit targeting 830 single-copy loci (776,754 bp in total), including 279 genes from the Universal Angiosperms-353 kit. With an average of 557,600 reads and 87.8% gene recovery, our target capture was successful across the family Gesneriaceae and also in other families of Lamiales. From our bait set, we selected the most informative 418 loci to resolve phylogenetic relationships across the entire Gesneriaceae family using maximum likelihood and coalescent-based methods. Upon testing the phylogenetic performance of our baits on 78 taxa representing 20 out of 24 subtribes within the family, we showed that our data provided high support for the phylogenetic relationships among the major lineages, and were able to provide high resolution within more recent radiations. Overall, the molecular resources we developed here open new perspectives for the study of Gesneriaceae phylogeny at different taxonomical levels and the identification of the factors underlying the diversification of this plant group.


Assuntos
Núcleo Celular/genética , Genes de Plantas , Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Sequência de Bases , DNA de Plantas/genética , Lamiales , Funções Verossimilhança
11.
J Evol Biol ; 34(7): 992-1009, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096650

RESUMO

A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life-history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi-gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy.


Assuntos
Evolução Biológica , Phaeophyceae , Animais , Teorema de Bayes , Estágios do Ciclo de Vida , Phaeophyceae/genética , Reprodução
12.
Nucleic Acids Res ; 47(D1): D50-D54, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357342

RESUMO

The study of molecular coevolution, due to its potential to identify gene regions under functional or structural constraints, has recently been subject to numerous scientific inquiries. Particular efforts have been conducted to develop methods predicting the presence of coevolution in molecular sequences. Among these methods, a few aim to model the underlying evolutionary process of coevolution, which enable to differentiate the shared history of genes to coevolution and thus improve their accuracy. However, the usage of such methods remains sparse due to their expensive computational cost and the lack of resources alleviating this issue. Here we present CoevDB (http://phylodb.unil.ch/CoevDB), a database containing the result of a large-scale analysis of intramolecular coevolution of 8201 protein-coding genes of bony vertebrates. The web interface of CoevDB gives access to the results to 800 millions of statistical tests corresponding to all the pairs of sites analyzed. Several type of queries enable users to explore the database by either targeting specific genes or by discovering genes having promising estimations of coevolution.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Evolução Molecular , Fases de Leitura Aberta , Vertebrados/genética , Animais , Filogenia , Software , Interface Usuário-Computador , Vertebrados/classificação
13.
Mol Biol Evol ; 36(6): 1316-1332, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30847475

RESUMO

There are numerous sources of variation in the rate of synonymous substitutions inside genes, such as direct selection on the nucleotide sequence, or mutation rate variation. Yet scans for positive selection rely on codon models which incorporate an assumption of effectively neutral synonymous substitution rate, constant between sites of each gene. Here we perform a large-scale comparison of approaches which incorporate codon substitution rate variation and propose our own simple yet effective modification of existing models. We find strong effects of substitution rate variation on positive selection inference. More than 70% of the genes detected by the classical branch-site model are presumably false positives caused by the incorrect assumption of uniform synonymous substitution rate. We propose a new model which is strongly favored by the data while remaining computationally tractable. With the new model we can capture signatures of nucleotide level selection acting on translation initiation and on splicing sites within the coding region. Finally, we show that rate variation is highest in the highly recombining regions, and we propose that recombination and mutation rate variation, such as high CpG mutation rate, are the two main sources of nucleotide rate variation. Although we detect fewer genes under positive selection in Drosophila than without rate variation, the genes which we detect contain a stronger signal of adaptation of dynein, which could be associated with Wolbachia infection. We provide software to perform positive selection analysis using the new model.


Assuntos
Códon , Modelos Genéticos , Taxa de Mutação , Seleção Genética , Mutação Silenciosa , Animais , Simulação por Computador , Drosophila/genética , Recombinação Genética , Vertebrados/genética
14.
Plant Cell Environ ; 43(12): 2987-3001, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677061

RESUMO

The adaptive radiation of Bromeliaceae (pineapple family) is one of the most diverse among Neotropical flowering plants. Diversification in this group was facilitated by shifts in several adaptive traits or "key innovations" including the transition from C3 to CAM photosynthesis associated with xeric (heat/drought) adaptation. We used phylogenomic approaches, complemented by differential gene expression (RNA-seq) and targeted metabolite profiling, to address the mechanisms of C3 /CAM evolution in the extremely species-rich bromeliad genus, Tillandsia, and related taxa. Evolutionary analyses of whole-genome sequencing and RNA-seq data suggest that evolution of CAM is associated with coincident changes to different pathways mediating xeric adaptation in this group. At the molecular level, C3 /CAM shifts were accompanied by gene expansion of XAP5 CIRCADIAN TIMEKEEPER homologs, a regulator involved in sugar- and light-dependent regulation of growth and development. Our analyses also support the re-programming of abscisic acid-related gene expression via differential expression of ABF2/ABF3 transcription factor homologs, and adaptive sequence evolution of an ENO2/LOS2 enolase homolog, effectively tying carbohydrate flux to abscisic acid-mediated abiotic stress response. By pinpointing different regulators of overlapping molecular responses, our results suggest plausible mechanistic explanations for the repeated evolution of correlated adaptive traits seen in a textbook example of an adaptive radiation.


Assuntos
Bromeliaceae/genética , Metabolismo Ácido das Crassuláceas/genética , Especiação Genética , Evolução Biológica , Bromeliaceae/metabolismo , Bromeliaceae/fisiologia , Genes de Plantas/genética , Filogenia , Análise de Sequência de RNA , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
15.
Syst Biol ; 68(1): 78-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931325

RESUMO

New World Monkeys (NWM) (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Herein, we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5-10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small-weighing 0.4 kg-and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of NWM and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends.


Assuntos
Clima , Fósseis , Filogenia , Platirrinos/classificação , África , Animais , Platirrinos/anatomia & histologia
16.
J Theor Biol ; 486: 110087, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31758967

RESUMO

Understanding macroevolutionary patterns is central to evolutionary biology. This involves the process of divergence within a species, which starts at the microevolutionary level, for instance, when two subpopulations evolve towards different phenotypic optima. The speed at which these optima are reached is controlled by the degree of stabilising selection, which pushes the mean trait towards different optima in the different subpopulations, and ongoing migration that pulls the mean phenotype away from that optimum. Traditionally, macro phenotypic evolution is modelled by directional selection processes, but these models usually ignore the role of migration within species. Here, our goal is to reconcile the processes of micro and macroevolution by modelling migration as part of the speciation process. More precisely, we introduce an Ornstein-Uhlenbeck (OU) model where migration happens between two subpopulations within a branch of a phylogeny and this migration decreases over time as it happens during speciation. We then use this model to study the evolution of trait means along a phylogeny, as well as the way phenotypic disparity between species changes with successive epochs. We show that ignoring the effect of migration in sampled time-series data biases significantly the estimation of the selective forces acting upon it. We also show that migration decreases the expected phenotypic disparity between species and we analyse the effect of migration in the particular case of niche filling. We further introduce a method to jointly estimate selection and migration from time-series data. Our model extends traditional quantitative genetics results of selection and migration from a microevolutionary time frame to multiple speciation events at a macroevolutionary scale. Our results further support that not accounting for gene flow has important consequences in inferences at both the micro and macroevolutionary scale.


Assuntos
Evolução Biológica , Fenótipo , Filogenia
17.
Ann Bot ; 125(1): 93-103, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31562744

RESUMO

BACKGROUND AND AIMS: The tremendously unbalanced distribution of species richness across clades in the tree of life is often interpreted as the result of variation in the rates of diversification, which may themselves respond to trait evolution. Even though this is likely a widespread pattern, not all diverse groups of organisms exhibit heterogeneity in their dynamics of diversification. Testing and characterizing the processes driving the evolution of clades with steady rates of diversification over long periods of time are of importance in order to have a full understanding of the build-up of biodiversity through time. METHODS: We studied the macroevolutionary history of the species-rich tree fern family Cyatheaceae and inferred a time-calibrated phylogeny of the family including extinct and extant species using the recently developed fossilized birth-death method. We tested whether the high diversity of Cyatheaceae is the result of episodes of rapid diversification associated with phenotypic and ecological differentiation or driven by stable but low rates of diversification. We compared the rates of diversification across clades, modelled the evolution of body size and climatic preferences and tested for trait-dependent diversification. KEY RESULTS: This ancient group diversified at a low and constant rate during its long evolutionary history. Morphological and climatic niche evolution were found to be overall highly conserved, although we detected several shifts in the rates of evolution of climatic preferences, linked to changes in elevation. The diversification of the family occurred gradually, within limited phenotypic and ecological boundaries, and yet resulted in a remarkable species richness. CONCLUSIONS: Our study indicates that Cyatheaceae is a diverse clade which slowly accumulated morphological, ecological and taxonomic diversity over a long evolutionary period and provides a compelling example of the tropics as a museum of biodiversity.


Assuntos
Gleiquênias , Biodiversidade , Evolução Biológica , Ecologia , Especiação Genética , Filogenia
18.
J Exp Bot ; 70(21): 6127-6139, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31498865

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the main enzyme determining the rate of photosynthesis. The small subunit of the protein, encoded by the rbcS gene, has been shown to influence the catalytic efficiency, CO2 specificity, assembly, activity, and stability of RuBisCO. However, the evolution of the rbcS gene remains poorly studied. We inferred the phylogenetic tree of the rbcS gene in angiosperms using the nucleotide sequences and found that it is composed of two lineages that may have existed before the divergence of land plants. Although almost all species sampled carry at least one copy of lineage 1, genes of lineage 2 were lost in most angiosperm species. We found the specific residues that have undergone positive selection during the evolution of the rbcS gene. We detected intensive coevolution between each rbcS gene copy and the rbcL gene encoding the large subunit of RuBisCO. We tested the role played by each rbcS gene copy on the stability of the RuBisCO protein through homology modelling. Our results showed that this evolutionary constraint could limit the level of divergence seen in the rbcS gene, which leads to the similarity among the rbcS gene copies of lineage 1 within species.


Assuntos
Evolução Molecular , Duplicação Gênica , Magnoliopsida/genética , Família Multigênica , Proteínas de Plantas/genética , Códon/genética , Conversão Gênica , Funções Verossimilhança , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Estabilidade Proteica , Seleção Genética , Spinacia oleracea/metabolismo , Termodinâmica
19.
PLoS Comput Biol ; 14(5): e1006188, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782520

RESUMO

Major histocompatibility complex class I (MHC-I) molecules are critical to adaptive immune defence mechanisms in vertebrate species and are encoded by highly polymorphic genes. Polymorphic sites are located close to the ligand-binding groove and entail MHC-I alleles with distinct binding specificities. Some efforts have been made to investigate the relationship between polymorphism and protein stability. However, less is known about the relationship between polymorphism and MHC-I co-evolutionary constraints. Using Direct Coupling Analysis (DCA) we found that co-evolution analysis accurately pinpoints structural contacts, although the protein family is restricted to vertebrates and comprises less than five hundred species, and that the co-evolutionary signal is mainly driven by inter-species changes, and not intra-species polymorphism. Moreover, we show that polymorphic sites in human preferentially avoid co-evolving residues, as well as residues involved in protein stability. These results suggest that sites displaying high polymorphism may have been selected during vertebrates' evolution to avoid co-evolutionary constraints and thereby maximize their mutability.


Assuntos
Sítios de Ligação/genética , Evolução Molecular , Antígenos de Histocompatibilidade Classe I , Polimorfismo Genético/genética , Animais , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Modelos Moleculares , Filogenia , Estabilidade Proteica , Vertebrados/genética
20.
Proc Biol Sci ; 285(1873)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29467260

RESUMO

The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels.


Assuntos
Evolução Biológica , Proteínas de Peixes/genética , Perciformes/anatomia & histologia , Perciformes/genética , Rodopsina/genética , Seleção Genética , Animais , Evolução Molecular , Proteínas de Peixes/metabolismo , Perciformes/fisiologia , Filogenia , Densidade Demográfica , Rodopsina/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa