Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732105

RESUMO

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Assuntos
Apoptose , Bortezomib , Mitocôndrias , Mieloma Múltiplo , Espécies Reativas de Oxigênio , Tigeciclina , Bortezomib/farmacologia , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Tigeciclina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos
2.
Cancers (Basel) ; 14(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36230663

RESUMO

Around 50% of the familial breast cancer (BC) cases are estimated to be caused by germline variants in known low-, moderate-, and high-risk susceptibility genes, while the other half is of unknown genetic origin. In the present study, we wanted to evaluate the role of the RECQ helicases, some of which have been studied in the past as candidates, with unclear results about their role in the disease. Using next-generation sequencing (NGS) technology, we analyzed the whole coding sequence of BLM, RECQL1, RECQL4, RECQL5, and WRN in almost 2000 index cases from BC Spanish families that had previously tested negative for the known BC susceptibility genes (BRCAX) and compared the results with the controls extracted from gnomAD. Our results suggest that BLM, RECQL1, RECQL4, and WRN do not play a major role in BC susceptibility. However, in the combined analysis, joining the present results with those previously reported in a series of 1334 BC Spanish patients and controls, we found a statistically significant association between Loss of Function (LoF) variants in RECQL5 and BC risk, with an OR of 2.56 (p = 0.009; 95% CI, 1.18-4.98). Our findings support our previous work and places the RECQL5 gene as a new moderate-risk BC gene.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa