Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Exp Parasitol ; 236-237: 108245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283169

RESUMO

Acanthamoeba castellanii is the etiological agent of granulomatous amebic encephalitis, amebic keratitis, and skin lesions. In vitro and in vivo studies have demonstrated that Acanthamoeba trophozoites induce contact-dependent, and contact-independent pathogenic mechanisms. We have explored the potential role neuroactive substances may have in the migration of Acanthamoeba castellanii trophozoites using Transwell permeable supports in the presence of physiological concentrations of dopamine, glutamate, serotonin, or taurine diluted in PBS. Quantitation of migrated amoebae was carried out in scanning electron micrographs of the upper and under compartments sides of the chamber membranes. Our results showed that at 2 h of interaction, a statistically significant larger proportion of A. castellanii trophozoites migrated through the chamber membranes when neurotransmitters were placed in the lower compartments of the chambers compared to control. This migration effect was more evident under the presence of glutamate and taurine on the three surfaces (upper/lower membrane and bottom compartment) when the percentage of migrated trophozoites was analyzed. Scanning electron microscopy of trophozoites revealed that glutamate and taurine induced the formation of large adhesion lamellas and phagocytic stomas. These observations suggest that certain neuroactive substances could stimulate the migration of A. castellanii trophozoites in the central nervous system.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Animais , Glutamatos/farmacologia , Neurotransmissores/farmacologia , Taurina/farmacologia , Trofozoítos
2.
J Eukaryot Microbiol ; 67(4): 491-504, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32302033

RESUMO

Early steps of tissue invasion by Entamoeba histolytica are mediated by adhesion and migration through matrix components such as fibronectin with the participation of the actin cytoskeleton. Striking differences in their produced structures, movement, and migration were found. These observations suggest differential changes in their ability to organize the actin cytoskeleton and, therefore, to modify its morphology after adhesion to fibronectin. To understand these observations, we explore deeper the cytoskeleton pathway of E. histolytica compared to Entamoeba dispar, analyzing the activation and involvement of actin cytoskeleton regulatory proteins such as small GTPases (Rho, Rac1 and Cdc42), myosin IB, paxillin, alpha-actinin, and ARP2/3 during interaction with fibronectin. Results showed a higher activation of Rac1 in E. histolytica compared to E. dispar, while Cdc42 and RhoA were equally activated in both amebae; besides, variations in the amount of myosin IB, paxillin, and ARP2/3 were detected among these species, coinciding and reflected in formation of lamellipodia in E. histolytica and filopodia in E. dispar. These could partially explain the higher invasive capacity of E. histolytica compared to E. dispar, due to its pleomorphic ability, high motility, migration, activation, and abundance of proteins involved in the cytoskeleton arrangement.


Assuntos
Entamoeba/fisiologia , Fibronectinas/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas dos Microfilamentos/metabolismo , Entamoeba/efeitos dos fármacos , Entamoeba/ultraestrutura , Entamoeba histolytica/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Microscopia Confocal , Proteínas de Protozoários/metabolismo
3.
J Eukaryot Microbiol ; 66(4): 654-669, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30620421

RESUMO

Autophagy is an adaptive response for cell survival in which cytoplasmic components and organelles are degraded in bulk under normal and stress conditions. Trichomonas vaginalis is a parasite highly adaptable to stress conditions such as iron (IR) and glucose restriction (GR). Autophagy can be traced by detecting a key autophagy protein (Atg8) anchored to the autophagosome membrane by a lipid moiety. Our goal was to perform a morphological and cellular study of autophagy in T. vaginalis under GR, IR, and Rapamycin (Rapa) treatment using TvAtg8 as a putative autophagy marker. We cloned tvatg8a and tvatg8b and expressed and purified rTvAtg8a and rTvAtg8b to produce specific polyclonal antibodies. Autophagy vesicles were detected by indirect immunofluorescence assays and confirmed by ultrastructural analysis. The biogenesis of autophagosomes was detected, showing intact cytosolic cargo. TvAtg8 was detected as puncta signal with the anti-rTvAtg8b antibody that recognized soluble and lipid-associated TvAtg8b by Western blot assays in lysates from stress-inducing conditions. The TvAtg8b signal co-localized with the CytoID and lysotracker labeling (autolysosomes) that accumulated after E-64d treatment in GR parasites. Our data suggest that autophagy induced by starvation in T. vaginalis results in the formation of autophagosomes for which TvAtg8b could be a putative autophagy marker.


Assuntos
Autofagossomos/fisiologia , Macroautofagia/efeitos dos fármacos , Biogênese de Organelas , Trichomonas vaginalis/fisiologia , Anti-Infecciosos/administração & dosagem , Glucose/deficiência , Deficiências de Ferro , Sirolimo/administração & dosagem
4.
Exp Parasitol ; 196: 22-27, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30472333

RESUMO

Acanthamoeba keratitis (AK) is a sight-threatening corneal infection. The early symptoms include redness, pain, photophobia and intense tearing. Chronic infection usually progresses to stromal inflammation, ring ulcers, corneal opacification and hypopyon. Here we document an AK case in a high myopic 38-year-old woman from Mexico City, with a history of wearing contact lenses while swimming. Corneal scrapes cultures were positive only for amoebae, consequently a treatment including netilmicin 0.3% and oral itraconazole 100 mg/12 h was prescribed. The infection was resolved after 8 months, leaving a slight leucoma outside the visual axis, with a visual acuity of 20/150. In the laboratory, the amoebic isolate was axenized in PYG medium, with an optimal growth at 30 °C, and was identified morphologically as Acanthamoeba polyphaga according to the taxonomic criteria of Page (1988) and placed in the T4 group by genotyping. The virulence of this strain (40%) was determined by intranasal inoculation of 1 × 106/20 µl trophozoites in BALB/c mice recovering from brain, proving their invasion ability and by the interaction with monolayers of epithelial cells of the established MDCK line of canine kidney origin (1:2 ratio of interaction), at 1, 3, 6, 8 and 24 h; trophozoites migrated to cell junctions inducing few lytic zones. In addition to the biological characterization, in vitro drug sensitivity tests were performed using chlorhexidine, itraconazole, netilmicin and voriconazole. Results revealed that voriconazole was the most effective compound. A. polyphaga remains as one of the most frequently isolated species producing AK. The treatment of AK case using netilmicin and oral itraconazole solved the disease, but the healing process was wide-ranging (8 months). The use of voriconazole and chlorhexidine may be an alternative treatment of future AK cases in Mexico.


Assuntos
Ceratite por Acanthamoeba/parasitologia , Acanthamoeba/efeitos dos fármacos , Anti-Infecciosos/administração & dosagem , Acanthamoeba/isolamento & purificação , Ceratite por Acanthamoeba/tratamento farmacológico , Adulto , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Clorexidina/farmacologia , Lentes de Contato/efeitos adversos , Lentes de Contato/parasitologia , Cães , Feminino , Humanos , Concentração Inibidora 50 , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Células Madin Darby de Rim Canino , México , Camundongos , Camundongos Endogâmicos BALB C , Midriáticos/administração & dosagem , Netilmicina/administração & dosagem , Netilmicina/farmacologia , Testes de Sensibilidade Parasitária , Fenilefrina/administração & dosagem , Tropicamida/administração & dosagem , Voriconazol/farmacologia
5.
Exp Parasitol ; 183: 245-253, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28974450

RESUMO

Acanthamoeba culbertsoni trophozoites, previously isolated from a human keratitis case with severe intraocular damage, were maintained in axenic culture. Co-incubation of amoebae with MDCK cell monolayers demonstrated an apparent preference of the amoebae to introduce themselves between the cells. The trophozoites appeared to cross the cell monolayer through the tight junctions, which resulted in decreased trans-epithelial resistance (TER) measurements. Unexpectedly, after co-incubation of amoebae with hamster corneas, we observed that the trophozoites were able to cross the different cell layers and reach the corneal stroma after only 12 h of interaction, in contrast to other Acanthamoeba species. These observations suggest that this A. culbertsoni isolate is particularly pathogenic. Further research with diverse methodologies needs to be performed to explain the unique behavior of this Acanthamoeba strain.


Assuntos
Ceratite por Acanthamoeba/parasitologia , Acanthamoeba/fisiologia , Acanthamoeba/ultraestrutura , Córnea/parasitologia , Acanthamoeba/patogenicidade , Animais , Cricetinae , Cães , Células Epiteliais/parasitologia , Humanos , Junções Intercelulares/parasitologia , Células Madin Darby de Rim Canino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Trofozoítos/fisiologia , Trofozoítos/ultraestrutura , Virulência
6.
Exp Parasitol ; 183: 150-159, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28917708

RESUMO

Granulomatous amoebic encephalitis (GAE) is a chronic, difficult to resolve infection caused by amphizoic amoebae of the genus Acanthamoeba, which in most cases occurs in immunosuppressed persons or with chronic diseases such as diabetes. In this study, we describe the early events of A. culbertsoni infection of GAE in diabetic mice model. Diabetes was induced in male BALB/c mice, with a dose of streptozotocin (130 mg/kg). Healthy and diabetic mice were inoculated via intranasal with 1 × 106 trophozoites of A. culbertsoni. Then were sacrificed and fixed by perfusion at 24, 48, 72 and 96 h post-inoculation, the brains and nasopharyngeal meatus were processed to immunohistochemical analysis. Invasion of trophozoites in diabetic mice was significantly greater with respect to inoculated healthy mice. Trophozoites and scarce cysts were immunolocalized in respiratory epithelial adjacent bone tissue, olfactory nerve packets, Schwann cells and the epineurium base since early 24 h post-inoculation. After 48 h, trophozoites were observed in the respiratory epithelium, white matter of the brain, subcortical central cortex and nasopharyngeal associated lymphoid tissue (NALT). At 72 h, cysts and trophozoites were immunolocalized in the olfactory bulb with the presence of a low inflammatory infiltrate characterized by polymorphonuclear cells. Scarce amoebae were observed in the granular layer of the cerebellum without evidence of inflammation or tissue damage. No amoebas were observed at 96 h after inoculation, suggesting penetration to other tissues at this time. In line with this, no inflammatory infiltrate was observed in the surrounding tissues where the amoebae were immunolocalized, which could contribute to the rapid spread of infection, particularly in diabetic mice. All data suggest that trophozoites invade the tissues by separating the superficial cells, penetrating between the junctions without causing cytolytic effect in the adjacent cells and subsequently reaching the CNS, importantly, diabetes increases the susceptibility to amoebae infection, which could favor the GAE development.


Assuntos
Acanthamoeba/patogenicidade , Amebíase/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Encefalite/parasitologia , Acanthamoeba/fisiologia , Animais , Encéfalo/parasitologia , Encéfalo/patologia , Cerebelo/parasitologia , Cerebelo/patologia , Suscetibilidade a Doenças , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nasofaringe/parasitologia , Nasofaringe/patologia , Bulbo Olfatório/parasitologia , Bulbo Olfatório/patologia , Inoculações Seriadas , Trofozoítos , Virulência
7.
Exp Parasitol ; 183: 69-75, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29097064

RESUMO

Free-living amoebae of the genus Acanthamoeba are protozoa ubiquitously found in nature. Some species of the genus are potentially pathogenic for humans provoking keratitis in healthy individuals, often in contact lens wearers and opportunistic infections such as pneumonitis, fatal granulomatous encephalitis and skin infections, particularly in immunocompromised individuals. The pathogenic mechanisms of these amoebae are poorly understood, however it had been suggested that contact dependent mechanisms are important during invasion, regardless of the epithelia type, since amoebae penetrate epithelia separating tight junction (TJ). This study was undertaken to determine whether Acanthamoeba sp. (T4) damages the barrier function of the TJ in MDCK epithelial monolayers. Actin cytoskeleton staining and electron microscopy analyses were performed; paracellular permeability and TJ sealing were evaluated by apicobasolateral diffusion of ruthenium red and transepithelial resistance (TER) measurements; immunofluorescence and Western blot assays were performed to locate and estimate expression of TJ protein claudins 2 (Cldn2) and 4 (Cldn4). The results show that Acanthamoeba sp. crosses the MDCK monolayer without altering the actin cytoskeleton or the morphology of the cells. When trophozoites or conditioned medium interact with the monolayer, paracellular diffusion of ruthenium red increases. After 6 h, the amoebae, but not their conditioned medium, increase the TER, and Cldn2 is removed from the TJ, and its overall content in the cells diminishes, while Cldn4 is targeted to the TJ without changing its expression level. In conclusion Acanthamoeba (T4) crosses MDCK monolayer without damaging the cells, increasing permeability and TER through Cldn2 degradation, and redirecting Cldn4 to TJ. These results strongly suggest that contact-dependent mechanisms are relevant during amoebae invasion.


Assuntos
Acanthamoeba/fisiologia , Células Madin Darby de Rim Canino/parasitologia , Junções Íntimas/parasitologia , Acanthamoeba/patogenicidade , Acanthamoeba/ultraestrutura , Animais , Western Blotting , Claudina-2/metabolismo , Claudina-4/metabolismo , Meios de Cultivo Condicionados , Cães , Impedância Elétrica , Imunofluorescência , Indicadores e Reagentes/metabolismo , Células Madin Darby de Rim Canino/ultraestrutura , Microscopia Eletrônica de Transmissão , Permeabilidade , Rutênio Vermelho/metabolismo , Junções Íntimas/química , Junções Íntimas/metabolismo , Trofozoítos/fisiologia , Trofozoítos/ultraestrutura
8.
J Eukaryot Microbiol ; 63(6): 744-750, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27087641

RESUMO

The virulence of various amoebic parasites has been correlated with the presence of electron-dense granules (EDGs) in the cytoplasm of trophozoites. Here, we report the finding by transmission electron microscopy of a large number of EDGs in a recent culture of Acanthamoeba culbertsoni, isolated from a severe case of human keratitis. When this isolate was maintained in culture for 6 mo, the granules almost disappeared. However, after induction of mice brain lesions with the long-term cultured isolate, recovered amoebas had abundant EDGs. Trophozoites of the original isolate, or those recovered from experimental lesions, secreted EDGs into the medium when incubated with MDCK cells. To analyze a possible cytotoxic effect the conditioned medium was incubated with MDCK monolayers. After 5 h, the media containing EDGs produced opening of the tight junctions; at 24 h, cell viability was compromised, and at 48 h most of the cells were detached from the monolayer. In contrast, trophozoites in long-term cultures did not release EDGs to the medium during incubation with MDCK cells, and the corresponding conditioned medium did not have any effect on MDCK monolayers. Our observations further support the hypothesis that EDGs play a role in the cytopathogenic mechanisms of A. culbertsoni.


Assuntos
Acanthamoeba/patogenicidade , Acanthamoeba/ultraestrutura , Amebíase/parasitologia , Ceratite/parasitologia , Acanthamoeba/genética , Acanthamoeba/isolamento & purificação , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/ultraestrutura , Virulência
9.
Parasitol Res ; 115(2): 873-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26581373

RESUMO

Free-living amoebae (FLA) are widely distributed worldwide. Some genera included in this group act as opportunistic pathogens causing fatal encephalitis and Acanthamoeba keratitis (AK), a sight-threatening infection of the cornea associated with the use of soft contact lenses that could even end in blindness if an early diagnosis and treatment are not achieved. Furthermore, the numbers of AK cases keep rising worldwide mainly due to an increase of contact lens wearers and lack of hygiene in the maintenance of lenses and their cases. In Mexico, no cases of AK have been described so far although the isolation of other pathogenic FLA such as Naegleria fowleri and Balamuthia mandrillaris from both clinical and environmental sources has been reported. The present study reports two cases of Acanthamoeba keratitis diagnosed in two patients admitted to the Hospital "Luis Sánchez Bulnes" for Blindness Prevention in Mexico City, Mexico. Corneal scrapes and contact lenses were checked for the presence of Acanthamoeba strains in both patients. Strains were axenized after initial isolation to classify at the genotype level. After sequencing the diagnostic fragment 3 (DF3) region located on the 18S ribosomal DNA (rDNA) gene of Acanthamoeba, genotype T3 and genotype T4 were identified in clinical case 1 and 2, respectively. To our knowledge, these are the first reported cases of AK in Mexico in the literature and the first description of Acanthamoeba genotypes T3 and T4 as causative agents of amoebic infection.


Assuntos
Ceratite por Acanthamoeba/diagnóstico , Acanthamoeba/classificação , Encefalite/diagnóstico , Acanthamoeba/genética , Acanthamoeba/isolamento & purificação , Ceratite por Acanthamoeba/parasitologia , Adulto , Lentes de Contato/parasitologia , Córnea/parasitologia , DNA Ribossômico/genética , Encefalite/parasitologia , Feminino , Genótipo , Humanos , México , Análise de Sequência de DNA , Adulto Jovem
10.
Exp Parasitol ; 157: 150-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297955

RESUMO

Additional morphological features of Balamuthia mandrillaris observed by light and electron microscopy are reported. Trophozoites were extremely pleomorphic: their cell shapes ranged from rounded to elongated and sometimes they appeared exceptionally stretched out and branched. By transmission electron microscopy it was possible to observe two different cytoplasmic areas, the ectoplasm and the endoplasm and often sections of rough endoplasmic reticulum were found in the transition zone. The cytoplasm was very fibrogranular and most of the organelles typically found in eukaryotic cells were observed. A particular finding was the presence of numerous mitochondria with a different structure from those of other free-living amoebae. The observations reported here may reinforce the morphological knowledge of this amoeba and provide a background for further analyses.


Assuntos
Balamuthia mandrillaris/ultraestrutura , Animais , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Interferência
11.
Eye Contact Lens ; 40(3): 132-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24699779

RESUMO

PURPOSE: To describe the adhesion properties of Acanthamoeba castellanii trophozoites to silicone hydrogel contact lenses of first generation (lotrafilcon A), second generation (galyfilcon A), and third generation (comfilcon A) and correlate the results with their specific surface characteristics, time of interaction, and suspension media. METHODS: Qualitative and quantitative assessments of the adhesion of 200 trophozoites of A. castellanii on contact lenses in culture medium (Bacto Casitone) and isotonic saline (IS) at different time points (15 minutes and 6 hours) were determined. RESULTS: By scanning electron microscopy, A. castellanii trophozoites were observed firmly adhered to the surface of hydrogel lenses after 15 minutes of interaction. The surface of lotrafilcon A lenses on which amoebae adhere better (16.4±10.2 amoebae/lens section) is rough and folded, which increases the contact surface with trophozoites, allowing acanthopodia to attach firmly. Contrarily, galyfilcon A lenses have a smoother surface, and lower numbers of amoebae were observed adhered to these lenses (4.7±2.9 amoebae/lens section). Even fewer amoebae adhered to the smoother surface of the comfilcon A lens (2.2±1.7 amoebae/lens section). Trophozoites showed similar behavior in both Bacto Casitone medium and IS. CONCLUSION: A rough surface may contribute to better adhesion of amoebae to silicone hydrogel lenses. Although a reduced numbers of trophozoites adhered to smooth lenses, trophozoites are a risk factor for amoebic keratitis. Isotonic saline facilitated trophozoite survival, suggesting that homemade saline solutions may contribute to the persistence of trophozoites, especially when there is no proper hygiene regimen used with the contact lens cases.


Assuntos
Acanthamoeba castellanii/isolamento & purificação , Lentes de Contato Hidrofílicas/microbiologia , Hidrogéis , Elastômeros de Silicone , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Fatores de Tempo , Trofozoítos
12.
Int J Parasitol Drugs Drug Resist ; 24: 100531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484645

RESUMO

Leishmaniasis and Chagas disease are parasitic infections that affect millions of people worldwide, producing thousands of deaths per year. The current treatments against these pathologies are not totally effective and produce some side effects in the patients. Acrylonitrile derivatives are a group of compounds that have shown activity against these two diseases. In this work, four novels synthetic acrylonitriles were evaluated against the intracellular form and extracellular forms of L. amazonensis and T. cruzi. The compounds 2 and 3 demonstrate to have good selectivity indexes against both parasites, specifically the compound 3 against the amastigote form (SI = 6 against L. amazonensis and SI = 7.4 against T. cruzi). In addition, the parasites treated with these two compounds demonstrate to produce a programmed cell death, since they were positive for the events studied related to this type of death, including chromatin condensation, accumulation of reactive oxygen species and alteration of the mitochondrial membrane potential. In conclusion, this work confirms that acrylonitriles is a source of possible new compounds against kinetoplastids, however, more studies are needed to corroborate this activity.


Assuntos
Acrilonitrila , Antiprotozoários , Doença de Chagas , Leishmania mexicana , Trypanosoma cruzi , Humanos , Antiprotozoários/farmacologia , Acrilonitrila/farmacologia , Acrilonitrila/uso terapêutico , Doença de Chagas/tratamento farmacológico , Morte Celular
13.
Exp Parasitol ; 133(4): 369-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23357648

RESUMO

Observations on cultured Acanthamoeba royreba trophozoites and in vitro cytopathogenicity of this amoeba are described. In culture, amoebae were active, pleomorphic and moved on the substrate by producing endocytic structures and emitting slight cytoplasmic microprojections from the cell surface. These projections were formed by hyaline cytoplasm and they were related to motion structures such as acanthopodia and lamellipodia, in which actin provides a framework that allows rapid changes in morphology. In the cytoplasm abundant vacuoles of different size and content were seen. By means of electron microscopy, it was possible to observe the compact fibrogranular appearance of the cytoplasm, along with the main cellular organelles such as the Golgi complex, the endoplasmic reticulum, digestive vacuoles, mitochondria and contractile vacuoles. Incubation of MDCK epithelial cell monolayers with conditioned medium did not produce a significant structural damage to the monolayer, even after 24h of incubation. When the trophozoites were incubated with the target cells the monolayer exhibited a clear injury created by the amoebae, which produced focal damage. Nevertheless, the rest of the monolayer appeared to remain intact, suggesting that a contact-dependent interaction is necessary to damage the target cells. These observations demonstrate the low invasive capacity of this amoeba.


Assuntos
Ceratite por Acanthamoeba/parasitologia , Acanthamoeba/citologia , Acanthamoeba/classificação , Acanthamoeba/patogenicidade , Acanthamoeba/ultraestrutura , Animais , Cultura Axênica , Encéfalo/parasitologia , Meios de Cultivo Condicionados , Cães , Humanos , Pulmão/parasitologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Contraste de Fase
14.
Parasitol Res ; 112(3): 1125-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319266

RESUMO

During Acanthamoeba castellanii trophozoite-cysts differentiation, four morphological stages were identified by scanning electron microscopy: trophozoite, precyst, immature cysts, and mature cysts. Fluorescence microscopy reveals the presence of small cumulus of actin in the cytoplasm of precysts after treatment with rhodamine phalloidin. By the contrary, in mature cysts, fluorescence was not observed. However, when excystation was induced, large fluorescent patches were present. By transmission electron microscopy, encysting amebas showed small cytoplasmic vesicles containing fibrillar material, surrounded by a narrow area of thin fibrils. Similar appearance was observed in pseudopods and phagocytic invaginations. In addition, large aggregates of rod-shape elements, similar to the chromatoid bodies, described in other amebas, were present in the cytoplasm. These cysts presented large areas with orange fluorescence after treatment with acridine orange.


Assuntos
Acanthamoeba castellanii/ultraestrutura , Esporos de Protozoários/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
15.
Pathogens ; 12(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37624009

RESUMO

Acanthamoeba spp. is the etiological agent of amoebic keratitis. In this study, the effect of taurine in physiological concentrations in tears (195 µM) on trophozoites of Acanthamoeba castellanii through the ex vivo amoebic keratitis model was evaluated. Trophozoites were coincubated with the Syrian golden hamster cornea (Mesocricetus auratus) for 3 and 6 h. Group 1: Control (-). Corneas coincubated with amoebic culture medium and taurine. Group 2: Control (+). Corneas coincubated with trophozoites without taurine. Group 3: Corneas coincubated with taurine 15 min before adding trophozoites. Group 4: Trophozoites coincubated 15 min with taurine before placing them on the cornea. Group 5: Corneas coincubated for 15 min with trophozoites; subsequently, taurine was added. Results are similar for both times, as evaluated by scanning electron microscopy. As expected, in the corneas of Group 1, no alterations were observed in the corneal epithelium. In the corneas of Group 2, few adhered trophozoites were observed on the corneal surface initiating migrations through cell junctions as previously described; however, in corneas of Groups 3, 4 and 5, abundant trophozoites were observed, penetrating through different corneal cell areas, emitting food cups and destabilizing corneal surface in areas far from cell junctions. Significant differences were confirmed in trophozoites adherence coincubated with taurine (p < 0.05). Taurine does not prevent the adhesion and invasion of the amoebae, nor does it favor its detachment once these have adhered to the cornea, suggesting that taurine in the physiological concentrations found in tears stimulates pathogenic mechanisms of A. castellanii.

16.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111233

RESUMO

Leishmaniasis and Chagas disease affect millions of people worldwide. The available treatments against these parasitic diseases are limited and display multiple undesired effects. The brown alga belonging to the genus Gongolaria has been previously reported as a source of compounds with different biological activities. In a recent study from our group, Gongolaria abies-marine was proven to present antiamebic activity. Hence, this brown alga could be a promising source of interesting molecules for the development of new antiprotozoal drugs. In this study, four meroterpenoids were isolated and purified from a dichloromethane/ethyl acetate crude extract through a bioguided fractionation process targeting kinetoplastids. Moreover, the in vitro activity and toxicity were evaluated, and the induction of programmed cell death was checked in the most active and less toxic compounds, namely gongolarone B (2), 6Z-1'-methoxyamentadione (3) and 1'-methoxyamentadione (4). These meroterpenoids triggered mitochondrial malfunction, oxidative stress, chromatin condensation and alterations of the tubulin network. Furthermore, a transmission electron microscopy (TEM) image analysis showed that meroterpenoids (2-4) induced the formation of autophagy vacuoles and ER and Golgi complex disorganization. The obtained results demonstrated that the mechanisms of action at the cellular level of these compounds were able to induce autophagy as well as an apoptosis-like process in the treated parasites.

17.
Biomed Pharmacother ; 158: 114185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916403

RESUMO

Free Living Amoeba (FLA) infections caused by Acanthamoeba genus include chronic nervous system diseases such as Granulomatous Amoebic Encephalitis (GAE), or a severe eye infection known as Acanthamoeba keratitis (AK). Current studies focused on therapy against these diseases are aiming to find novel compounds with amoebicidal activity and low toxicity to human tissues. Brown algae, such as Gongolaria abies-marina (previously known as Cystoseira abies-marina, S.G. Gmelin), presents bioactive molecules of interest, including some with antiprotozoal activity. In this study, six meroterpenoids were isolated and purified from the species Gongolaria abies-marina. Gongolarones A (1), B (2) and C (3) were identified as new compounds. Additionally, cystomexicone B (4), 1'-methoxyamentadione (5) and 6Z-1'-methoxyamentadione (6) were isolated. All compounds exhibited amoebicidal activity against Acanthamoeba castellanii Neff, A. polyphaga and A. griffini strains. Gongolarones A (1) and C (3) showed the lowest IC50 values against the two stages of these amoebae (trophozoite and cyst). Structure-activity relationship revealed that the cyclization by ether formation from C-12 to C-15 of 1, and the isomerization Δ2 t to Δ3 t of 3, increased the antiamoeboid activity of both compounds. Furthermore, gongolarones A (1) and C (3) triggered chromatin condensation, mitochondrial malfunction, oxidative stress, and disorganization of the tubulin-actin cytoskeleton in treated trophozoites. Moreover, transmission electron microscopy (TEM) images analysis revealed that compounds 1 and 3 induced autophagy process and inhibited the encystation process. All those results suggest that both compounds could induce programmed cell death (PCD) in Acanthamoeba.


Assuntos
Acanthamoeba castellanii , Amebicidas , Animais , Humanos , Amebicidas/farmacologia , Trofozoítos , Citoesqueleto de Actina
18.
Microorganisms ; 11(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004773

RESUMO

Several species of Acanthamoeba genus are potential pathogens and etiological agents of several diseases. The pathogenic mechanisms carried out by these amoebae in different target tissues have been documented, evidencing the relevant role of contact-dependent mechanisms. With the purpose of describing the pathogenic processes carried out by these protozoans more precisely, we considered it important to determine the emission of extracellular vesicles (EVs) as part of the contact-independent pathogenicity mechanisms of A. culbertsoni, a highly pathogenic strain. Through transmission electronic microscopy (TEM) and nanoparticle tracking analysis (NTA), EVs were characterized. EVs showed lipid membrane and a size between 60 and 855 nm. The secretion of large vesicles was corroborated by confocal and TEM microscopy. The SDS-PAGE of EVs showed proteins of 45 to 200 kDa. Antigenic recognition was determined by Western Blot, and the internalization of EVs by trophozoites was observed through Dil-labeled EVs. In addition, some EVs biological characteristics were determined, such as proteolytic, hemolytic and COX activity. Furthermore, we highlighted the presence of leishmanolysin in trophozites and EVs. These results suggest that EVs are part of a contact-independent mechanism, which, together with contact-dependent ones, allow for a better understanding of the pathogenicity carried out by Acanthamoeba culbertsoni.

19.
Exp Parasitol ; 130(1): 86-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22067209

RESUMO

Some structural observations on cultured Vahlkampfia sp. trophozoites are reported. Trophozoites are active and pleomorphic, producing large cell protrusions related to locomotion such as lamellipodia, filopodia and endocytic structures formed by hyaline cytoplasm, in which actin provides a framework that allows rapid changes in morphology. As observed by transmission electron microscopy, the cytoplasm is highly granular masking some cell organelles and the major cytoplasmic membrane systems. The structure of cell organelles such as the nucleus, endoplasmic reticulum, and digestive vacuoles is described. A common finding was the presence of 50 nm electron-dense round granules that are not limited by a membrane and that appear scattered in the cytoplasm, and whose function remains unknown. Apparently, the cell reserve material is glycogen, since complete trophozoites were positive to Schiff periodic-acid technique.


Assuntos
Amebíase/parasitologia , Ceratite/parasitologia , Schizopyrenida/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Polissacarídeos/análise , Schizopyrenida/citologia , Schizopyrenida/crescimento & desenvolvimento , Trofozoítos/citologia , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/ultraestrutura
20.
Parasitol Res ; 111(1): 215-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22278728

RESUMO

The rapid redistribution of surface antigen-antibody complexes in trophozoites of the human protozoan parasite Entamoeba histolytica, in a process known as capping, has been considered as a means of the parasite to evade the host immune response. So far, capping has been documented in the invasive E. histolytica, whereas the mobility of surface components in the non-invasive Entamoeba dispar is not known. E. dispar does not induce liver lesions in rodent experimental models, in contrast to the liver abscesses produced by E. histolytica in the same animal model. We have therefore analyzed the mobility of surface receptors to the lectin concanavalin A and of Rab11, a membrane-associated protein, in both species of Entamoebae by confocal fluorescence microscopy and transmission and scanning electron microscopy. The great majority of E. histolytica trophozoites became morphologically polarized through the formation of well-defined caps at the posterior pole of the parasite. Actin colocalized with the lectin caps. Antibodies against the membrane protein Rab 11 also produced capping. In striking contrast, in E. dispar, the mobility of concanavalin A surface receptors was restricted to the formation of irregular surface patches that did no progress to constitute well-defined caps. Also, anti-Rab 11 antibodies did not result in capping in E. dispar. Whether the failure of E. dispar to efficiently mobilize surface molecules in response to lectin or antibodies as shown in the present results is related to its non-invasive character represents an interesting hypothesis requiring further analysis.


Assuntos
Antígenos de Protozoários/metabolismo , Entamoeba/patogenicidade , Animais , Concanavalina A/metabolismo , Entamoeba/metabolismo , Entamoeba/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa